微观经济学-范里安 EUT_第1页
微观经济学-范里安 EUT_第2页
微观经济学-范里安 EUT_第3页
微观经济学-范里安 EUT_第4页
微观经济学-范里安 EUT_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EUT:BuildtheEmpireontheSandLing,ChenSchoolofEconomics,SWUFE1ExpectedUtilityTheoremThepreferencesaredefinedoverprospects(lotteries),whichsatisfyfollowingaxioms:CompletenessTransitivityContinuityIndependence2FailureoftheEUT?EasytoconstructtestsofEUTthatpeople“fail”Whatdoes“failure”mean?Aretheysystematic?CanweidentifythedomainofEUT?3ViolationoftheIndependenceAxiomAllais(1953):Commonconsequenceeffects1:($1M,1) r1:($5M,0.1;$1M,0.89;0,0.01)-------------------------------------------------------------------------s2:($1M,0.11;0,0.89)r2:($5M,0.1;0;0.9) Ifs1ispreferredoverr1,thenEUTimpliesthats2ispreferredoverr2

However,mostsubjectsprefers1overr1,andr2overs2:ViolationoftheIndependence(why?)4CommonRatioEffectAllais(1953)s1:($3000,1)r1:($4000,0.8;0,0.2)-------------------------------------------------------------s2:($3000,0.25;0,0.75)r2:($4000,0.2;0,0.8)Again,Ifs1ispreferredoverr1,thenEUTimpliesthats2ispreferredoverr2However,mostsubjectsprefers1overr1,andr2overs2:ViolationoftheIndependence5Dowehaveawell-definedpreference?Preferencereversal:$-betvs.P-betP-bet:.99$4,.01$-1(EV=$3.95VAR=0.0895)$-bet:.33$16,.67$-2(EV=$3.94VAR=50.518)Question1:Whichonedoyouprefertoplay?MostgoforP-betQuestion2:Ifyouaresellingthem,whichonehasthehigherprice?Mostsubjectspricing$-bethigher6IntransitivityinterpretationAsymmetricreversal:Pbetspreferredto$bets$betssellingpricesarehigherthansellingpricesforPbetsSetWTAitoavaluebetweenthosestatedfor$andPbets$-bet>WTAi(basedonpricingtask)WTAi>P-bet(basedonpricingtask)ButP-bet>$-bet7FramingEffectTverskyandKahneman(1981,Science)ImaginethattheU.S.ispreparingfortheoutbreakofanunusualAsiandisease,whichisexpectedtokill600people.Twoalternativeprogramstocombatthediseasehavebeenproposed.Assumethattheexactscientificestimateoftheconsequencesoftheprogramsareasfollows:8FramingEffectIfprogramAisadopted,200peoplewillbesaved.IfprogramBisadopted,thereis1/3probabilitythat600peoplewillbesaved,and2/3probabilitythatnopeoplewillbesaved72%subjectschoseprogramA9FramingEffectIfprogramCisadopted,400peoplewilldie.IfprogramDisadopted,thereis1/3probabilitythatnobodywilldie,and2/3probabilitythat600peoplewilldie.78%samesubjectschoseprogramDButA=CandB=D.Thewayyoupresentthematerialswillchangethepreference(atleasttherevealedpreference)!10Rabin’scalibrationSupposeJohnisarisk-averseexpectedutilitymaximizer,andthathewillalwaysturndownthe50-50gambleoflosing$10orgaining$11.WhatelsecanwesayaboutJohn?11ContsSpecifically,whatisthebiggestYsuchthatweknowJohnwillturndowna50-50lose$100/win$Ybet?$110 $221$2000 $20,242$1.1M $2.5M AlwaysrejectnomatterwhatYisNeedmoreinformationabouthisutilityfunction12CalibrationResults(Rabin,2000)13SubjectiveProbabilitySubjectiveexpectedutilitytheorem(Savage1954)Ellsberg’sParadox(Ellsberg1961)Considertwourns,bothcontain100ballseitherinredoryellow.Urn1has50redballs,whilewedon’tknowthenumberofredballsinurn2.Gamble1:win$100inyoudrawredballoutofanurn/Whichurndoyouprefer?Gamble1:win$100inyoudrawyellowballoutofanurn/Whichurndoyouprefer?14Non-EUTModel:AGeneralIdeaExpectedPaymentEUT:EUTsimplytransformthepaymenttoutility,butkeeptheprobability.Whynotalsotransformprobability?Non-EUT:15AlternativestoEUTRank-dependentEUQuigginJEBO1982Allownon-linearpreferencesOriginalprospecttheoryKahneman&TverskyEconometrica1979EditingandthenevaluationCumulativeprospecttheoryStarmer&SugdenAnnalsofOR1989Tversky&KahnemanJRU199216ProspectTheoryKahnemanandTversky(1979):2002NobelPrizeAssumeu(x)=xα ifx≥0Assumeu(x)=-λ(-x)β ifx<0Assumew(p)=pγ/[pγ+(1-p)γ]1/γPU=∑k[w(pk)xUk]NewcomponentsDecisionweightsw(p)Utilitydefinedovergains&lossesLossaversionλ17Probabilityweights–thenKahneman&Tversky197918Probabilityweights–nowTversky&Kahneman199219Lossaversion20Rank-DependentEUTJohnQuiggin(1982,hisundergraduatethesis)Theprobabilityweightfunctionwherex1isthebestoutcomeandxnistheworst.RDEU:21WhyNon-EUTColinF.Camerer(2003):ProspectTheoryintheWild:EvidencefromtheFieldFinance:TheequitypremiumAveragereturntostocksishigher(8%peryear)thanbondsWhy?Risk-averseplayersneedpremium…MehraandPrescott(1985)askhowlargeadegreeofrisk-aversionistoexplainthat8%?Indifferencebetweenacoinflippayingeither$50,000or$100,000andasureamount$51,20922ContsBenartziandThaler(1997):PTbasedexplantionInvestorareaversetoloss(thechancethatreturnarenegative).23EUTvs.Non-EUTWhichoneisthebetterunderlyingmodeltoexplainthebehavior?EUTisaspecialcaseofprospecttheoryProspecttheoryhasmoreparametersthanEUT,henceitisnotsurprisethatithasmorepowertoexplainthedataEUTissimple,elegant,andaxiombased.24ExpectedUtilityTheoryand

ProspectTheory:

OneWeddingandADecentFuneralGlennW.Harrison&E.ElisabetRutström(ExperimentalEconomics2008)25GeneralmethodologicalpointHypothesistestsassumejustonedatageneratingprocessWhicheverDGPexplainsmoreofthedataisdeclared“the”DGP,andtheothersdiscardedConsiderlotterychoicebehaviorAssumeEUT&ProspectTheoryAssumecertainfunctionalformsforthemodelsgeneratingthedataAllowformultipleDGP,unitedusingmixturemodelsandagrandlikelihoodfunctionSolvethemodelIdentifywhichsubjectsarebetterdescribedbywhichDGP26GeneralmethodologicalpointHypothesistestsassumejustonedatageneratingprocessWhicheverDGPexplainsmoreofthedataisdeclared“the”DGP,andtheothersdiscardedConsiderlotterychoicebehavior:theChapelinVegasAssumeEUT&ProspectTheory:theBride&GroomAssumecertainfunctionalformsforthemodelsgeneratingthedata:thePrenuptialAgreementAllowformultipleDGP,unitedusingmixturemodelsandagrandlikelihoodfunction:theWeddingSolvethemodel:ConsummatingthemarriageIdentifywhichsubjectsarebetterdescribedbywhichDGP:aDecentFuneralfortheRepresentativeAgent27ScreenDisplayinGainFrame28ScreenDisplayinMixedFrame29TheirLab30TheRandomNumberGenerators31TheBride–EUTAssumeU(s,x)=(s+x)rAssumeprobabilitiesforlotteryasinducedEU=∑k[pkxUk]Definelatentindex∆EU=EUR-EULDefinecumulativeprobabilityofobservedchoiceusingthelogisticG(∆EU)Conditionallog-likelihoodofEUTthendefined:∑i[(lnG(∆EU)|yi=1)+(ln(1-G(∆EU))|yi=0)]Needtoestimater32TheCDFassumption33TheGroom–PTAssumeU(x)=xα ifx≥0AssumeU(x)=-λ(-x)β ifx<0Assumew(p)=pγ/[pγ+(1-p)γ]1/γPU=∑k[w(pk)xUk]Definelatentindex∆PU=PUR-PULDefinecumulativeprobabilityofobservedchoicebylogisticG(∆PU)Conditionallog-likelihoodofPTthendefined: ∑i[(lnG(∆PU)|yi=1)+(ln(1-G(∆PU))|yi=0)]Needtoestimateα,β,λandγ34TheNuptialGrand-likelihoodisjusttheprobabilityweightedconditionallikelihoodsProbabilityofEUT: ρEUTProbabilityofPT:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论