版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Section10.2EvaluationofDoubleIntegrals1Riemann,Bernhard2Geometricmeaningofthedoubleintegralcylindricalbodyinthreedimensionalspace.VolumeofaCylindricalbodyσthenitcanbethinkofaSupposethat3VolumeofaCylindricalbodyVolume=4CalculatingDoubleIntegralsOverRectanglesiscontinuousdefinedonarectangularregion(σ)ThenwemakeanetworkoflinesparallelTheselinesdivide(σ)intotox-andy-axes.WenumbersmallpiecesofareatheseinsomeorderthenChooseapointineachpiecegivenby5gotozero,thesumsapproachalimitcalledtheCalculatingDoubleIntegralsOverRectanglesIffiscontinuousthroughout(σ),thenaswerefinedthemeshwidthtomakebothandThenotationforitisdoubleintegraloffover(σ).orThus,Aswithfunctionsofasinglevariable,thesumsapproachthislimitnothatdetermine(σ)arepartitioned,matterhowtheintervalsandaslongasthenormsofthepartitionsbothgotozero.6Fubini’sTheoremforCalculatingDoubleIntegralsSupposethatwewishtocalculatethevolumeundertheplaneonthexy-plane.overtherectangularregionIfwedenotetheareaofthecross-sectionatxasForeachvalueofx,wemaycalculate,thenthevolumeisastheintegralwhichistheareaunderthecurveintheplaneofthecrosssectionatx.7Fubini’sTheoremforCalculatingDoubleIntegrals,xisheldfixedandtheintegrationtakesplacewithIncalculatingThenthevolumeoftheentiresolidisrespecttoy.Ifwejustwanttowriteinstructionsforcalculatingthevolume,withoutcarryingoutanyoftheintegrations,wecouldhavewritten8Fubini’sTheoremforCalculatingDoubleIntegralsWhatwouldhavehappenedifwehadcalculatedthevolumebyslicingwithplanesperpendiculartothey–axis?Asafunctionofy,thetypicalcross-sectionareaisTherefore9Fubini’sTheoremforCalculatingDoubleIntegralsTheoremFubini’sTheorem(FirstForm)iscontinuousthroughouttherectangularIfthenregionFubini’stheoremsaysthatdoubleintegralsoverrectanglescanbeThus,wecanevaluatecalculatedasiteratedintegrals[累次积分].adoubleintegralbyintegratingwithrespecttoonevariableatatime.10EvaluatingaDoubleIntegralExampleforCalculateandSolutionByFubini’stheorem,Reversingtheorderofintegrationgivesthesameanswer:11DoubleIntegralsoverBoundedNonrectangularRegionsIf
(Ω)
isaregionliketheoneshowninthexy-planebounded“above”and“below”bytheintheleftfigure,andonthesidescurvesandwemayagainbythelinescalculatethevolumebythemethodWefirstcalculatethecross-sectionareaofslicing.iscontinuousdefinedonaclosedregion(Ω).12DoubleIntegralsoverBoundedNonrectangularRegionsfromtogetthevolumeasanThentheintegratetoiteratedintegral13DoubleIntegralsoverBoundedNonrectangularRegions,thentheSimilarly,if
(Ω)
isaregionliketheoneshownintherightfigure,boundedbytheandcurvesandthelinesandvolumecalculatedbyslicingisgivenbytheiteratedintegral14DoubleIntegralsoverBoundedNonrectangularRegionsTheoremFubini’sTheorem(StrongerFrom)becontinuousonaregion(Ω).Letwithh1andh2continuous2.If(Ω)isdefinedby,thenon1.If(Ω)isdefinedbywithg1andg2continuous,thenony–typeregionx–typeregionDoubleIntegralsoverBoundedNonrectangularRegions15Example
Findwhere(Ω)istheregionboundedbythelinex=1,y=0andtheparabolax=1
OxyDoubleIntegralsoverBoundedNonrectangularRegions16Example
Findwhere(Ω)istheregionboundedbythelinex=1,y=0andtheparabolax=1
Oxy117FindingVolumeExampleFindthevolumeoftheprismwhoseandandwhosetopliesintheplanebaseisthetrianglein
thexy–planeboundedbythex–axisandthelinesSolutionForanyxbetween0and1,ymayHence,mayvaryfromto18FindingVolumeSolution(continued)Whentheorderofintegrationisreversed,theintegralforthevolumeisThetwointegralsareequal,astheyshouldbe.19DoubleIntegralsoverBoundedNonrectangularRegionsNoteabxyOcdΩx0y0Iftheregion(Ω)
isofbothx-typeandy-type,thenfromtheFubini’sTheorem(StrongerFrom)weknow20ReversingTheOrderofIntegrationExample
Sketchtheregionofintegrationfortheintegralandwriteanequivalentintegralwiththeorderofintegrationreversed.SolutiontheregionboundedbythecurvesandTherefore,betweenandTofindtheintegratinginthereverseorder,weimagineahorizontallinepassingfromlefttorightthroughtheregion.21ReversingTheOrderofIntegrationSolution(continued)andleavesatThecommonvalueoftheseintegralsis8.Toincludeallsuchlines,welety
ThelineentersatTheintegralisrunfromto22FindingAreaExample
Findtheareaoftheregion(Ω)
enclosedbytheparabolaandthelineSolutionIfwedivide(Ω)
intotheregionsΩ
1andΩ
2shownintherightfigure,wemaycalculatetheareaas23FindingAreaSolution(continued)Ontheotherhand,reversingtheorderofintegrationgivesThisresultissimplerandistheonlyonewewouldbothertowritedowninTheareaispractice.Example
Findtheareaoftheregion(Ω)enclosedbytheparabolaandtheline24IntegralsinPolarCoordinatesisdefinedoveraregion(Ω)thatisboundedSupposethatafunctionandbythecontinuouscurvesbytheraysandforeveryvalueandSupposealsothatThen(Ω)liesinafan-shapedregionQdefinedofφ
betweenα
andβ.andbytheinequalitiesapproachalimitaswerefinethegridtomakeIntegralsinPolarCoordinatesbethecenterofthepolarrectanglewhoseareaisWeletBy“center”,wemeanthepointthatlieshalfwaybetweenthecircularWethenformthesumarcontheraythatbisectsthearcs.IffiscontinuousthroughoutΩ,thissumwillLargesectorSmallsectorgotozero.andTheareasofthecircularsectorssubtendedbythesearcsattheoriginareOuter:Inner:26IntegralsinPolarCoordinatesTherefore,Then,BytheFubini’stheoremnowsaysthatthelimitapproachedbythesesumscanbeevaluatedbyrepeatedsingleintegrationswithrespecttoρandφ
as27HowtoIntegrateinPolarCoordinateswhere(Ω)
istheregiondeterminedExampleEvaluatebytheinequalitiesxyOab(Ω):28FindingLimitsofIntegrationExampleFindthelimitsofintegrationforintegratingoverandoutsidethetheregion
(Ω)
thatliesinsidethecardioidcircleSolutionrightfigure.Step1:sketch.ShowintheStep3:theρ–limitsofintegrationStep2:theφ–limitsofintegrationThentheinteg
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026六盘水师范学院招聘8人备考题库带答案详解(巩固)
- 2026广东广州花都区狮岭镇益群小学临聘教师招聘1人备考题库及一套完整答案详解
- 2026年福建莆田市荔城区埕头中学代课教师招聘1人备考题库含答案详解(完整版)
- 2026北京石油学院附属小学教育集团招聘1人备考题库附答案详解(典型题)
- 2026广东佛顺德容桂泰安小学招聘2人备考题库及答案详解(名师系列)
- 2026四川绵阳科技城低空装备检验检测认证有限责任公司招聘测试技术岗等岗位4人备考题库附参考答案详解(模拟题)
- 2026广西贵港市电子商务促进中心招募就业见习人员2人备考题库带答案详解(能力提升)
- 2026四川成都市简阳市禾丰镇便民服务和智慧蓉城运行中心招聘综治巡防队员5人备考题库附参考答案详解(综合卷)
- 2026上半年安徽事业单位联考宣城市市直单位招聘8人备考题库带答案详解(巩固)
- 2026上半年海南事业单位联考琼中黎族苗族自治县招聘60人备考题库及参考答案详解(新)
- 2026四川凉山州雷波县粮油贸易总公司面向社会招聘6人考试参考题库及答案解析
- 2024-2025学年广东省广州市越秀区九年级上学期期末数学试卷(含答案)
- 2026北京海淀初二上学期期末英语试卷和答案
- 多进制LDPC码编译码算法:从理论到硬件实现的深度剖析
- 2025年医院财务部工作总结及2026年工作计划
- 基于新课程标准的小学数学“教学评一致性”实践与研究课题开题报告
- 2026省考广西试题及答案
- 中国临床肿瘤学会(csco)乳腺癌诊疗指南2025
- 2025年(第十二届)输电技术大会:基于可重构智能表面(RIS)天线的相控阵无线通信技术及其在新型电力系统的应用
- 带压开仓培训课件
- 护理儿科中医题库及答案解析
评论
0/150
提交评论