版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Section10.2EvaluationofDoubleIntegrals1Riemann,Bernhard2Geometricmeaningofthedoubleintegralcylindricalbodyinthreedimensionalspace.VolumeofaCylindricalbodyσthenitcanbethinkofaSupposethat3VolumeofaCylindricalbodyVolume=4CalculatingDoubleIntegralsOverRectanglesiscontinuousdefinedonarectangularregion(σ)ThenwemakeanetworkoflinesparallelTheselinesdivide(σ)intotox-andy-axes.WenumbersmallpiecesofareatheseinsomeorderthenChooseapointineachpiecegivenby5gotozero,thesumsapproachalimitcalledtheCalculatingDoubleIntegralsOverRectanglesIffiscontinuousthroughout(σ),thenaswerefinedthemeshwidthtomakebothandThenotationforitisdoubleintegraloffover(σ).orThus,Aswithfunctionsofasinglevariable,thesumsapproachthislimitnothatdetermine(σ)arepartitioned,matterhowtheintervalsandaslongasthenormsofthepartitionsbothgotozero.6Fubini’sTheoremforCalculatingDoubleIntegralsSupposethatwewishtocalculatethevolumeundertheplaneonthexy-plane.overtherectangularregionIfwedenotetheareaofthecross-sectionatxasForeachvalueofx,wemaycalculate,thenthevolumeisastheintegralwhichistheareaunderthecurveintheplaneofthecrosssectionatx.7Fubini’sTheoremforCalculatingDoubleIntegrals,xisheldfixedandtheintegrationtakesplacewithIncalculatingThenthevolumeoftheentiresolidisrespecttoy.Ifwejustwanttowriteinstructionsforcalculatingthevolume,withoutcarryingoutanyoftheintegrations,wecouldhavewritten8Fubini’sTheoremforCalculatingDoubleIntegralsWhatwouldhavehappenedifwehadcalculatedthevolumebyslicingwithplanesperpendiculartothey–axis?Asafunctionofy,thetypicalcross-sectionareaisTherefore9Fubini’sTheoremforCalculatingDoubleIntegralsTheoremFubini’sTheorem(FirstForm)iscontinuousthroughouttherectangularIfthenregionFubini’stheoremsaysthatdoubleintegralsoverrectanglescanbeThus,wecanevaluatecalculatedasiteratedintegrals[累次积分].adoubleintegralbyintegratingwithrespecttoonevariableatatime.10EvaluatingaDoubleIntegralExampleforCalculateandSolutionByFubini’stheorem,Reversingtheorderofintegrationgivesthesameanswer:11DoubleIntegralsoverBoundedNonrectangularRegionsIf
(Ω)
isaregionliketheoneshowninthexy-planebounded“above”and“below”bytheintheleftfigure,andonthesidescurvesandwemayagainbythelinescalculatethevolumebythemethodWefirstcalculatethecross-sectionareaofslicing.iscontinuousdefinedonaclosedregion(Ω).12DoubleIntegralsoverBoundedNonrectangularRegionsfromtogetthevolumeasanThentheintegratetoiteratedintegral13DoubleIntegralsoverBoundedNonrectangularRegions,thentheSimilarly,if
(Ω)
isaregionliketheoneshownintherightfigure,boundedbytheandcurvesandthelinesandvolumecalculatedbyslicingisgivenbytheiteratedintegral14DoubleIntegralsoverBoundedNonrectangularRegionsTheoremFubini’sTheorem(StrongerFrom)becontinuousonaregion(Ω).Letwithh1andh2continuous2.If(Ω)isdefinedby,thenon1.If(Ω)isdefinedbywithg1andg2continuous,thenony–typeregionx–typeregionDoubleIntegralsoverBoundedNonrectangularRegions15Example
Findwhere(Ω)istheregionboundedbythelinex=1,y=0andtheparabolax=1
OxyDoubleIntegralsoverBoundedNonrectangularRegions16Example
Findwhere(Ω)istheregionboundedbythelinex=1,y=0andtheparabolax=1
Oxy117FindingVolumeExampleFindthevolumeoftheprismwhoseandandwhosetopliesintheplanebaseisthetrianglein
thexy–planeboundedbythex–axisandthelinesSolutionForanyxbetween0and1,ymayHence,mayvaryfromto18FindingVolumeSolution(continued)Whentheorderofintegrationisreversed,theintegralforthevolumeisThetwointegralsareequal,astheyshouldbe.19DoubleIntegralsoverBoundedNonrectangularRegionsNoteabxyOcdΩx0y0Iftheregion(Ω)
isofbothx-typeandy-type,thenfromtheFubini’sTheorem(StrongerFrom)weknow20ReversingTheOrderofIntegrationExample
Sketchtheregionofintegrationfortheintegralandwriteanequivalentintegralwiththeorderofintegrationreversed.SolutiontheregionboundedbythecurvesandTherefore,betweenandTofindtheintegratinginthereverseorder,weimagineahorizontallinepassingfromlefttorightthroughtheregion.21ReversingTheOrderofIntegrationSolution(continued)andleavesatThecommonvalueoftheseintegralsis8.Toincludeallsuchlines,welety
ThelineentersatTheintegralisrunfromto22FindingAreaExample
Findtheareaoftheregion(Ω)
enclosedbytheparabolaandthelineSolutionIfwedivide(Ω)
intotheregionsΩ
1andΩ
2shownintherightfigure,wemaycalculatetheareaas23FindingAreaSolution(continued)Ontheotherhand,reversingtheorderofintegrationgivesThisresultissimplerandistheonlyonewewouldbothertowritedowninTheareaispractice.Example
Findtheareaoftheregion(Ω)enclosedbytheparabolaandtheline24IntegralsinPolarCoordinatesisdefinedoveraregion(Ω)thatisboundedSupposethatafunctionandbythecontinuouscurvesbytheraysandforeveryvalueandSupposealsothatThen(Ω)liesinafan-shapedregionQdefinedofφ
betweenα
andβ.andbytheinequalitiesapproachalimitaswerefinethegridtomakeIntegralsinPolarCoordinatesbethecenterofthepolarrectanglewhoseareaisWeletBy“center”,wemeanthepointthatlieshalfwaybetweenthecircularWethenformthesumarcontheraythatbisectsthearcs.IffiscontinuousthroughoutΩ,thissumwillLargesectorSmallsectorgotozero.andTheareasofthecircularsectorssubtendedbythesearcsattheoriginareOuter:Inner:26IntegralsinPolarCoordinatesTherefore,Then,BytheFubini’stheoremnowsaysthatthelimitapproachedbythesesumscanbeevaluatedbyrepeatedsingleintegrationswithrespecttoρandφ
as27HowtoIntegrateinPolarCoordinateswhere(Ω)
istheregiondeterminedExampleEvaluatebytheinequalitiesxyOab(Ω):28FindingLimitsofIntegrationExampleFindthelimitsofintegrationforintegratingoverandoutsidethetheregion
(Ω)
thatliesinsidethecardioidcircleSolutionrightfigure.Step1:sketch.ShowintheStep3:theρ–limitsofintegrationStep2:theφ–limitsofintegrationThentheinteg
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《老年人能力综合评估规范》标准修订编制说明
- DB11T 1031-2013 低层蒸压加气混凝土承重建筑技术规程
- 农业机械采购招投标文件范本
- 智慧城市解决方案研发外包制度
- 活动策划师聘用合同模板
- 汽车维修招投标操作规程
- 医药电商子公司用户体验改进
- 教育机构硬化地面施工合同
- 城镇医疗救助管理办法综合
- 教育公司消防管道安装合同
- 预防倾倒综合征
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
- 完整2024年国有企业管理人员处分条例专题课件
- 2024-2025一年级上册科学教科版2.5《通过感官来发现》课件
- 中华民族共同体概论课件专家版8第八讲 共奉中国与中华民族聚力发展
- GB/T 32066-2024煤基费托合成液体石蜡
- 术中获得性压力损伤预防
- 国开电大本科工程数学(本)在线形考(形成性考核作业4)试题及答案
- 机器视觉课件
- 六年级上册美术课件-第1课 建筑艺术的美 ▏人美版 (共20张PPT)
- 公路顶管穿越施工方案(中文)
评论
0/150
提交评论