




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Section10.2EvaluationofDoubleIntegrals1Riemann,Bernhard2Geometricmeaningofthedoubleintegralcylindricalbodyinthreedimensionalspace.VolumeofaCylindricalbodyσthenitcanbethinkofaSupposethat3VolumeofaCylindricalbodyVolume=4CalculatingDoubleIntegralsOverRectanglesiscontinuousdefinedonarectangularregion(σ)ThenwemakeanetworkoflinesparallelTheselinesdivide(σ)intotox-andy-axes.WenumbersmallpiecesofareatheseinsomeorderthenChooseapointineachpiecegivenby5gotozero,thesumsapproachalimitcalledtheCalculatingDoubleIntegralsOverRectanglesIffiscontinuousthroughout(σ),thenaswerefinedthemeshwidthtomakebothandThenotationforitisdoubleintegraloffover(σ).orThus,Aswithfunctionsofasinglevariable,thesumsapproachthislimitnothatdetermine(σ)arepartitioned,matterhowtheintervalsandaslongasthenormsofthepartitionsbothgotozero.6Fubini’sTheoremforCalculatingDoubleIntegralsSupposethatwewishtocalculatethevolumeundertheplaneonthexy-plane.overtherectangularregionIfwedenotetheareaofthecross-sectionatxasForeachvalueofx,wemaycalculate,thenthevolumeisastheintegralwhichistheareaunderthecurveintheplaneofthecrosssectionatx.7Fubini’sTheoremforCalculatingDoubleIntegrals,xisheldfixedandtheintegrationtakesplacewithIncalculatingThenthevolumeoftheentiresolidisrespecttoy.Ifwejustwanttowriteinstructionsforcalculatingthevolume,withoutcarryingoutanyoftheintegrations,wecouldhavewritten8Fubini’sTheoremforCalculatingDoubleIntegralsWhatwouldhavehappenedifwehadcalculatedthevolumebyslicingwithplanesperpendiculartothey–axis?Asafunctionofy,thetypicalcross-sectionareaisTherefore9Fubini’sTheoremforCalculatingDoubleIntegralsTheoremFubini’sTheorem(FirstForm)iscontinuousthroughouttherectangularIfthenregionFubini’stheoremsaysthatdoubleintegralsoverrectanglescanbeThus,wecanevaluatecalculatedasiteratedintegrals[累次积分].adoubleintegralbyintegratingwithrespecttoonevariableatatime.10EvaluatingaDoubleIntegralExampleforCalculateandSolutionByFubini’stheorem,Reversingtheorderofintegrationgivesthesameanswer:11DoubleIntegralsoverBoundedNonrectangularRegionsIf
(Ω)
isaregionliketheoneshowninthexy-planebounded“above”and“below”bytheintheleftfigure,andonthesidescurvesandwemayagainbythelinescalculatethevolumebythemethodWefirstcalculatethecross-sectionareaofslicing.iscontinuousdefinedonaclosedregion(Ω).12DoubleIntegralsoverBoundedNonrectangularRegionsfromtogetthevolumeasanThentheintegratetoiteratedintegral13DoubleIntegralsoverBoundedNonrectangularRegions,thentheSimilarly,if
(Ω)
isaregionliketheoneshownintherightfigure,boundedbytheandcurvesandthelinesandvolumecalculatedbyslicingisgivenbytheiteratedintegral14DoubleIntegralsoverBoundedNonrectangularRegionsTheoremFubini’sTheorem(StrongerFrom)becontinuousonaregion(Ω).Letwithh1andh2continuous2.If(Ω)isdefinedby,thenon1.If(Ω)isdefinedbywithg1andg2continuous,thenony–typeregionx–typeregionDoubleIntegralsoverBoundedNonrectangularRegions15Example
Findwhere(Ω)istheregionboundedbythelinex=1,y=0andtheparabolax=1
OxyDoubleIntegralsoverBoundedNonrectangularRegions16Example
Findwhere(Ω)istheregionboundedbythelinex=1,y=0andtheparabolax=1
Oxy117FindingVolumeExampleFindthevolumeoftheprismwhoseandandwhosetopliesintheplanebaseisthetrianglein
thexy–planeboundedbythex–axisandthelinesSolutionForanyxbetween0and1,ymayHence,mayvaryfromto18FindingVolumeSolution(continued)Whentheorderofintegrationisreversed,theintegralforthevolumeisThetwointegralsareequal,astheyshouldbe.19DoubleIntegralsoverBoundedNonrectangularRegionsNoteabxyOcdΩx0y0Iftheregion(Ω)
isofbothx-typeandy-type,thenfromtheFubini’sTheorem(StrongerFrom)weknow20ReversingTheOrderofIntegrationExample
Sketchtheregionofintegrationfortheintegralandwriteanequivalentintegralwiththeorderofintegrationreversed.SolutiontheregionboundedbythecurvesandTherefore,betweenandTofindtheintegratinginthereverseorder,weimagineahorizontallinepassingfromlefttorightthroughtheregion.21ReversingTheOrderofIntegrationSolution(continued)andleavesatThecommonvalueoftheseintegralsis8.Toincludeallsuchlines,welety
ThelineentersatTheintegralisrunfromto22FindingAreaExample
Findtheareaoftheregion(Ω)
enclosedbytheparabolaandthelineSolutionIfwedivide(Ω)
intotheregionsΩ
1andΩ
2shownintherightfigure,wemaycalculatetheareaas23FindingAreaSolution(continued)Ontheotherhand,reversingtheorderofintegrationgivesThisresultissimplerandistheonlyonewewouldbothertowritedowninTheareaispractice.Example
Findtheareaoftheregion(Ω)enclosedbytheparabolaandtheline24IntegralsinPolarCoordinatesisdefinedoveraregion(Ω)thatisboundedSupposethatafunctionandbythecontinuouscurvesbytheraysandforeveryvalueandSupposealsothatThen(Ω)liesinafan-shapedregionQdefinedofφ
betweenα
andβ.andbytheinequalitiesapproachalimitaswerefinethegridtomakeIntegralsinPolarCoordinatesbethecenterofthepolarrectanglewhoseareaisWeletBy“center”,wemeanthepointthatlieshalfwaybetweenthecircularWethenformthesumarcontheraythatbisectsthearcs.IffiscontinuousthroughoutΩ,thissumwillLargesectorSmallsectorgotozero.andTheareasofthecircularsectorssubtendedbythesearcsattheoriginareOuter:Inner:26IntegralsinPolarCoordinatesTherefore,Then,BytheFubini’stheoremnowsaysthatthelimitapproachedbythesesumscanbeevaluatedbyrepeatedsingleintegrationswithrespecttoρandφ
as27HowtoIntegrateinPolarCoordinateswhere(Ω)
istheregiondeterminedExampleEvaluatebytheinequalitiesxyOab(Ω):28FindingLimitsofIntegrationExampleFindthelimitsofintegrationforintegratingoverandoutsidethetheregion
(Ω)
thatliesinsidethecardioidcircleSolutionrightfigure.Step1:sketch.ShowintheStep3:theρ–limitsofintegrationStep2:theφ–limitsofintegrationThentheinteg
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山西机电职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年山东畜牧兽医职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年安顺职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年宁波城市职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- BLS培训课件教学课件
- 2023年工作总结报告
- 胆源性胰腺炎护理
- 119消防安全讲座课件
- 新能源冷暖设备供应及施工承包合同
- 2025年济南泺口实验学校八年级下学期物理期中前测考试试卷(含答案)
- 安徽省芜湖市无为市部分学校2023-2024学年八年级下学期期中数学试题
- 《妇女保健与营养》课件
- Improve6西格玛改善阶段绿带教材
- 预防便秘的健康宣教内容
- 2024年蜀道集团招聘笔试参考题库含答案解析
- 初中语文九年级下册第四单元作业设计单元质量检测作业
- 2022辅警考试《道路交通安全法》基础知识题库(带答案)
- 液压仿真技术的现状及发展趋势
- nrf2and通路在药物治疗中的作用
- 高考语文复习:诗歌语言鉴赏
- 泌尿外科常见疾病诊疗指南
评论
0/150
提交评论