版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第7页共7页(经典)最全余弦定理的10种证明方法(经典)最全余弦定理的10种证明方法——王彦文青铜峡一中一、余弦定理余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在中,已知,,,则有,,.二、定理证明为了叙述的方便与统一,我们证明以下问题即可:在中,已知,,及角,求证:.证法一:如图1,在中,由可得:即,.证法二:本方法要注意对进行讨论.(1)当是直角时,由知结论成立.(2)当是锐角时,如图2-1,过点作,交于点,则在中,,.从而,.在中,由勾股定理可得:即,.说明:图2-1中只对是锐角时符合,而还可以是直角或钝角.若是直角,图中的点就与点重合;若是钝角,图中的点就在的延长线上.(3)当是钝角时,如图2-2,过点作,交延长线于点,则在中,,.从而,.在中,由勾股定理可得:即,.综上(1),(2),(3)可知,均有成立.证法三:过点作,交于点,则在中,,.在中,,.由可得:整理可得.证法四:在中,由正弦定理可得.从而有,………………①.…………②将①带入②,整理可得.…………③将①,③平方相加可得.即,.证法五:建立平面直角坐标系(如图4),则由题意可得点,,,再由两点间距离公式可得.即,.证法六:在中,由正弦定理可得,,.于是,即,结论成立.证法七:在中,由正弦定理可得,,.于是,由于,因此.这,显然成立.即,结论成立.证法八:如图5,以点为圆心,以为半径作,直线与交于点,延长交于,延长交于.则由作图过程知,故.由相交弦定理可得:,即,,整理可得:.证法九:如图6,过作∥,交的外接圆于,则,.分别过作的垂线,垂足分别为,则,故.由托勒密定理可得,即,.整理可得:.证法十:由图7-1和图7-2可得,整理可得:.余弦定理的证明方法还有很多,比如可以用物理方法证明、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025防火门购销安装合同
- 水厂消防应急小组聘用合同模板
- 核电站网架施工合同
- 宁波环保事业单位聘用合同指南
- 2025年度集装箱行业标准制定合同3篇
- 展览展示设计师招聘合同
- 画廊主体施工合同
- 环保工程设备施工合同协议书
- 影视剧本创作人员租赁协议
- 儿童篮球租赁协议
- 2023年青海省西宁市中考地理真题含解析
- 酒店人防管理制度
- 古诗词诵读 《锦瑟》公开课一等奖创新教学设计统编版选择性必修中册
- GB/T 24478-2023电梯曳引机
- 食堂经营方案(技术标)
- 代收实收资本三方协议范本
- 人教版八年级英语下册全册课件【完整版】
- 乒乓球比赛表格
- 商务接待表格
- 肠梗阻导管治疗
- word小报模板:优美企业报刊报纸排版设计
评论
0/150
提交评论