天津市河西区新华圣功校2022年中考一模数学试题含解析_第1页
天津市河西区新华圣功校2022年中考一模数学试题含解析_第2页
天津市河西区新华圣功校2022年中考一模数学试题含解析_第3页
天津市河西区新华圣功校2022年中考一模数学试题含解析_第4页
天津市河西区新华圣功校2022年中考一模数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市河西区新华圣功校2022年中考一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.52.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n) B.3(m+n) C.4n D.4m3.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案32.52.55则最省钱的方案为()A.方案1 B.方案2C.方案3 D.三个方案费用相同4.如图,已知垂直于的平分线于点,交于点,,若的面积为1,则的面积是()A. B. C. D.5.观察下列图形,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.下列各运算中,计算正确的是()A.a12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a•3a=6a27.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1048.若3x>﹣3y,则下列不等式中一定成立的是()A. B. C. D.9.下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B. C.﹣ D.010.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(

)A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在直角坐标系中,⊙A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是______________.12.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.13.若关于x的方程的解是正数,则m的取值范围是____________________14.如图,在扇形OAB中,∠O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,,OB上,则图中阴影部分的面积为__________.15.函数y=中自变量x的取值范围是_____.16.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.17.某小区购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰树的单价.设银杏树的单价为x元,可列方程为______.三、解答题(共7小题,满分69分)18.(10分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)19.(5分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积20.(8分)计算:(-1)-1-++|1-3|21.(10分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度

百分比

A.非常了解

5%

B.比较了解

m

C.基本了解

45%

D.不了解

n

请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.22.(10分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.23.(12分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.24.(14分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG•BF=2,∴AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.2、D【解析】

解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.3、A【解析】

求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为,方案2混合糖果的单价为,方案3混合糖果的单价为.∵a>b,∴,∴方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.4、B【解析】

先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面积为1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.5、C【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、既不是轴对称图形,也不是中心对称图形.故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.7、D【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10700=1.07×104,

故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、A【解析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.9、B【解析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.10、A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】分析:因为BP=,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用△APC≌△DOC求出AP的长即可求解.详解:如图,作AP⊥直线y=x+3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.∵A的坐标为(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC与△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案为2.点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.12、﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.13、m<4且m≠2【解析】解方程得x=4-m,由已知可得x>0且x-2≠0,则有4-m>0且4-m-2≠0,解得:m<4且m≠2.14、8π﹣8【解析】

连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.【详解】连接EF、OC交于点H,则OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面积=×4×4=8,扇形OAB的面积==8π,则阴影部分的面积为8π﹣8,故答案为8π﹣8.【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.15、x≥﹣且x≠1.【解析】

根据分式有意义的条件、二次根式有意义的条件列式计算.【详解】由题意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案为:x≥-且x≠1.【点睛】本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.16、【解析】试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,∴P(飞镖落在白色区域)=.17、【解析】

根据银杏树的单价为x元,则玉兰树的单价为1.5x元,根据“某小区购买了银杏树和玉兰树共1棵”列出方程即可.【详解】设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意,得:1.故答案为:1.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.三、解答题(共7小题,满分69分)18、DE的长度为6+1.【解析】

根据相似三角形的判定与性质解答即可.【详解】解:过E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,设EF为x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE==6+1,答:DE的长度为6+1.【点睛】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.19、(1),N(3,6);(2)y=-x+2,S△OMN=3.【解析】

(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;

(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.【详解】解:(1)∵点M是AB边的中点,∴M(6,3).∵反比例函数y=经过点M,∴3=.∴k=1.∴反比例函数的解析式为y=.当y=6时,x=3,∴N(3,6).(2)由题意,知M(6,2),N(2,6).设直线MN的解析式为y=ax+b,则,解得,∴直线MN的解析式为y=-x+2.∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.【点睛】本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.20、-1【解析】试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.试题解析:原式=-1-=-1.21、解:(1)400;15%;35%.(2)1.(3)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(4)列树状图得:∵从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,∴小明参加的概率为:P(数字之和为奇数);小刚参加的概率为:P(数字之和为偶数).∵P(数字之和为奇数)≠P(数字之和为偶数),∴游戏规则不公平.【解析】(1)根据“基本了解”的人数以及所占比例,可求得总人数:180÷45%=400人.在根据频数、百分比之间的关系,可得m,n的值:.(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角:360°×35%=1°.(3)根据D等级的人数为:400×35%=140,据此补全条形统计图.(4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平.22、(1)见解析,(2)CF=cm.【解析】

(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论