下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学必修书有哪些知识点高一数学必修书知识点归纳整理11.一些基本概念:(1)向量:既有大小,又有方向的量.(2)数量:只有大小,没有方向的量.(3)有向线段的三要素:起点、方向、长度.(4)零向量:长度为0的向量.(5)单位向量:长度等于1个单位的向量.(6)平行向量(共线向量):方向相同或相反的非零向量.※零向量与任一向量平行.(7)相等向量:长度相等且方向相同的向量.2.向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点高一数学必修书知识点归纳整理2方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高一数学必修书知识点归纳整理3集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。将拉丁字母赋给集合的是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。常用的有列举法和描述法。1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|03.图示法(venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。集合自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N_(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律A∩B=B∩AA∪B=B∪A集合结合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合Cu(A∩B)=CuA∪C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国船缆行业投资前景及策略咨询研究报告
- 2024至2030年中国羊角轴行业投资前景及策略咨询研究报告
- 2024至2030年非特种劳防用品项目投资价值分析报告
- 2024至2030年自粘转贴纸项目投资价值分析报告
- 《VIP客房案例》课件
- 2024至2030年中国天然花香洗衣粉行业投资前景及策略咨询研究报告
- 2024至2030年中国器材行业投资前景及策略咨询研究报告
- 2024至2030年散垫片项目投资价值分析报告
- 2024至2030年弹性环箍项目投资价值分析报告
- 2024至2030年四托辊电子皮带秤项目投资价值分析报告
- 社会主义发展简史智慧树知到课后章节答案2023年下北方工业大学
- 食堂服务外包投标方案(技术标)
- 儿科学(西安交通大学)智慧树知到课后章节答案2023年下西安交通大学
- GB/T 43142-2023超高压水射流船舶除锈成套装备
- 三相桥式全控整流及有源逆变电路仿真
- 膨胀爆破施工方案
- 新概念英语第二册-1-24课测试总卷
- 食品化学08第八章 食品添加剂
- 新教科版五年级上册科学全册问答题总结(超全)
- 子女跟家长断绝关系协议书
- 第十一章三角形单元复习题2023-2024学年人教版八年级数学上册含解析
评论
0/150
提交评论