版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学考前冲刺技巧高考数学考前冲刺技巧有哪些数学科目其实需要记忆的公式还是比较多的,不光是要好好记住,还要会适当的运用,大家在考前这几天,要熟记公式,巩固相关知识点。下面小编给大家整理了关于高考数学考前冲刺技巧的内容,欢迎阅读,内容仅供参考!高考数学考前冲刺技巧1.整理公式数学的内容更加灵活一些,不需要去背诵,只是会应用就可以了。首先可以把,这段时间学习到的公式整理一下,对于知识点有大概的了解。考试也是针对这些知识点进行出题考查的,了解了这些公式,才能更加快速、精确地答题。2.复习错题这个是数学科目复习的重点,拿出自己的错题本,可以把自己错的题再做一遍,重新巩固自己所学的知识点。并且,达到能够解这一类型的题目,避免在期中考试中再犯相同的错误。错题本重在理解。3.多做练习数学考查的还是同学们运用的能力。平常多刷题(可以重复刷自己会做错的题,直到做对为止),能够提高自己的做题速度,并且可以见到更多不同题型的考查方法,能够真正地提高自己的数学成绩。“题海战术”虽然古老,但是一直很好用!高考数学答题注意事项答题时应遵循“先易后难勿恋战”的原则。高考试题编制上一般都有先易后难的特点,这样比较符合心理学原理。刚进考场时,绝大部分考生都会感到情绪比较紧张,其感知、记忆、思维等心理过程都还未完全适应考场的紧张氛围,没有达到思维的最佳状态。解答了几道比较容易的试题后,心情渐趋稳定,智力活动恢复常态,思维的灵活性和批判性大大提高,解题速度明显加快。而且,容易题做得越多,拿到的分数就越高,底气越足,自信心大大增强。遭遇难题时,若屡试不爽,则干脆跳过去,千万不能纠缠不休。试想想,一道15分的题目,你花了半个多小时才解答出来,即使正确,而因为你已付出了全场考试1/4的时间,却只得到了总分的1/10的回报,实在是得不偿失。这时候,说不定你已急得如热锅上的蚂蚁,方寸大乱了。如何学好高中数学1.上课认真听讲,对老师说过的话进行加工整理(一般的数学差的孩子都来不及整理笔记,或者不喜欢整理笔记,好的学生不太需要笔记,但是差的,那就不得不多记,多看了),把老师说的话,转化为自然语言,比如我说两向量共线等价于b=λa,翻译成,b和a成倍数关系,这就是自然语言,浅显易懂,加深理解。2.利用图形记忆,布赞的思维导图(高中数学做思维导图其实有点乱)告诉我们,图形很容易帮助记忆(提升100倍以上的记忆能力),所以我上课从来都说看图说话,用图形帮助记忆公式,帮助解题。3.课后做好订正,错题本,哲学上说,人不可能两次踏进同一条河流,但是做错的题目,往往学习偏差的学生还是会做错,防止做错的再做错,可以极大的提升成绩。4.理解题目,为何要怎么做题,波利亚《如何解题》,学生是没空研究,但适当的问题串引领,比如问自己,为什么这一步要这么么做,为什么要化简,为什么要…这种思维习惯都可以提升你的解题能力,我上课也都是这样的问题串讲解。5.适当的练习,题海战术我不推荐,但又最行之有效,但是是要在1.2.3.4.都做好的基础上,去练习,否则就是不求甚解。高中数学基础知识点总结一、平面的基本性质与推论1、平面的基本性质:公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;公理2过不在一条直线上的三点,有且只有一个平面;公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。2、空间点、直线、平面之间的位置关系:直线与直线—平行、相交、异面;直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);平面与平面—平行、相交。3、异面直线:平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);两条直线不是异面直线,则两条直线平行或相交(反证);异面直线不同在任何一个平面内。求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角二、空间中的平行关系1、直线与平面平行(核心)定义:直线和平面没有公共点判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行2、平面与平面平行定义:两个平面没有公共点判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线三、空间中的垂直关系1、直线与平面垂直定义:直线与平面内任意一条直线都垂直判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直性质:垂直于同一直线的两平面平行推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度2、平面与平面垂直定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)判定:一个平面过另一个平面的垂线,则这两个平面垂直性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直四、导数(一)导数第一定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第一定义(二)导数第二定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第二定义(三)导函数与导数如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。(四)单调性及其应用1.利用导数研究多项式函数单调性的一般步骤(1)求f(x)(2)确定f(x)在(a,b)内符号(3)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数2.用导数求多项式函数单调区间的一般步骤(1)求f(x)(2)f(x)0的解集与定义域的交集的对应区间为增区间;f(x)0的解集与定义域的交集的对应区间为减区间学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。五、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k项)当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4、等比数列的通项公式:an=a1qn-1an=akqn-k(其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=na1(是关于n的正比例式);六、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍为等差数列。2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍为等比数列。5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3七、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:元素的确定性;元素的互异性;元素的无序性.3、集合的表示:(1)如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4、集合的表示方法:列举法与描述法。常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N__或N+整数集Z有理数集Q实数集R5.关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。6、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}=Φ八、集合间的基本关系1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。即A?A②如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作A交B),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作A并B),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,看作一个全集。通常用U来表示。(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U九、函数的有关概念合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.2.构成函数的三要素:定义域、对应关系和值域再注意:(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的`数轴表示4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。5.常用的函数表示法:解析法:图象法:列表法:6.分段函数在定义域的不同部分上有不同的解析表达式的函数。(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集7.函数单调性(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间d称为y=f(x)的单调减区间.p=注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:○1任取x1,x2∈D,且x18.函数的奇偶性(1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○则-x也一定是定义域内的一个自变量(即定义域关于原点对称)(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。补充不等式的解法与二次函数(方程)的性质轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。十、求动点的轨迹方程的基本步骤。1、建立适当的坐标系,设出动点M的坐标;2、写出点M的集合;3、列出方程=0;4、化简方程为最简形式;5、检验。十一、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。求动点轨迹方程的一般步骤:①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。高考数学必考知识点圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度旅游服务合同结算范本6篇
- 二零二五年度国际贸易欺诈风险预警与应对合同3篇
- 海南医学院《审计》2023-2024学年第一学期期末试卷
- 2025年度深基坑支护土石方工程承包合作协议书2篇
- 二零二五年度房地产开发商与装修公司之间的装修合同3篇
- 边坡工程课程设计规范
- 英文课程设计理念
- 淘宝电商课程设计
- 贵州水质工程课程设计
- 二零二五年度数据中心建设服务合同2篇
- 散状料上料安全操作规程模版(3篇)
- 2025户外品牌探路者线上新媒体运营方案
- 《个案工作介入涉罪未成年人的家庭帮教研究》
- 2024-2025学年人教版地理七年级上册期末复习训练题(含答案)
- 2024年中学总务处工作总结
- 统编版(2024新版)七年级上册道德与法治期末综合测试卷(含答案)
- 教育部中国特色学徒制课题:基于中国特色学徒制的新形态教材建设与应用研究
- 2023年黑龙江日报报业集团招聘工作人员考试真题
- 安全管理人员安全培训教材
- 工程施工扬尘防治教育培训
- 影视后期制作团队薪酬激励方案
评论
0/150
提交评论