新人教版27.2.2相似三角形的性质 (优质课)上课 - 副本_第1页
新人教版27.2.2相似三角形的性质 (优质课)上课 - 副本_第2页
新人教版27.2.2相似三角形的性质 (优质课)上课 - 副本_第3页
新人教版27.2.2相似三角形的性质 (优质课)上课 - 副本_第4页
新人教版27.2.2相似三角形的性质 (优质课)上课 - 副本_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

27.2.3相似三角形的性质义务教育教科书九年级下册人民教育出版社2021/5/91复习回顾(2)相似三角形有什么性质?根据是什么?相似多边形呢?对应角相等,对应边成比例;根据定义;对应角相等,对应边成比例;(3)相似三角形的对应边的比叫什么?相似比(4)ΔABC与ΔA/B/C/

的相似比为k,则ΔA/B/C/

与ΔABC的相似比是多少?(1)相似三角形有哪些判定方法?定义,预备定理,(SSS),(SAS),(AA),(HL)2021/5/92如图,P是AB上一点,补充下列条件:(1)∠ACP=∠B;(2)∠APC=∠ACB;其中一定能使△ACP∽△ABC的是(

)

(A)(1)(2)(3)(4)(B)(1)(2)(3)(C)(3)(D)(1)(2)(4)ABCPD思考2021/5/93ABCDEABCDE21OCBAD常见图形OCDABABCDE2021/5/94基本图形的形成、变化及发展过程:∽

平行型

斜交型.

.

.

.

..旋转平移垂直型特殊特殊平移2021/5/95如图,是一块三角形木板,工人师傅要把它切割成:一块为三角形,另一块为梯形,且要使切割出的三角形与梯形的面积之比为4:5,那么该怎么切割呢?AB

C2021/5/96二、学习新知三角形中,除了角度和边长外,还有哪些几何量?高、角平分线、中线的长度,周长、面积等高角平分线中线思考?2021/5/97ABCA'B'C'D'D探究1如图,△ABC∽△A'B'C',相似比为k,它们对应高、对应中线、对应角平分线的比各是多少?如图,分别作△ABC和△A'B'C'的对应高AD和A'D'.∴∠B=∠B'则∠ADB=∠A'D'B'.∵△ABC∽△A'B'C'∴△ABD∽△A'B'D'相似三角形对应高的比等于相似比.2021/5/98如图,△ABC∽△A'B'C',相似比为k,它们对应高、对应中线、对应角平分线的比各是多少?探究1A'B'C'E'ABCE如图,分别作△ABC和△A'B'C'的对应中线AE和A'E',你能类比前面的方法证明吗?相似三角形对应中线的比等于相似比.2021/5/99如图,△ABC∽△A'B'C',相似比为k,它们对应高、对应中线、对应角平分线的比各是多少?探究1A'B'C'F'ABCF如图,分别作△ABC和△A'B'C'的对应角平分线AF和A'F'.你能类比前面的方法证明吗?相似三角形对应角平分线的比等于相似比.2021/5/910A'B'C'ABC相似三角形的周长有什么关系?相似三角形对应线段的比等于相似比.相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比.知识要点△△2021/5/911探究2

1、如图,△ABC∽△A'B'C'

,相似比为k,求它们周长的比.∵△ABC∽△A'B'C'相似三角形周长的比等于相似比.A'B'C'ABC2021/5/9122、如图,△ABC∽△A1B1C1,相似比为k,它们面积的比与相似比有什么关系?思考?A1B1C1ABC∵∴相似三角形面积的比等于相似比的平方.DD1S△ABCS△A1B1C1==k·k=k2如图,分别作△ABC和△A1B1C1的对应高AD和A1D1.2021/5/913总结

通过前面的思考、探索、推理,我们得到相似三角形有如下性质;

相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比等于相似比。相似三角形面积的比等于相似比的平方。2021/5/914探究3如图,四边形ABCD相似于四边形A'B'C'D',相似比为k2,它们的面积比是多少?ABCDA'B'C'D'则△ABC∽△A'B'C',△ADC∽△A'C'D',相似多边形面积的比等于相似比的平方.分别连接AC,A'C'2021/5/9151.判断(1)一个三角形的各边长扩大为原来的5倍,这个三角形的周长也扩大为原来的5倍;()(2)一个四边形的各边长扩大为原来的9倍,这个四边形的面积也扩大为原来的9倍.()练习(1)一个三角形各边扩大为原来5倍,相似比为1:5扩大5倍周长=5原周长三、应用新知2021/5/916解:一个三角形各边扩大为原来9倍,相似比为1:9边长扩大9倍四边形=81倍原四边形的的面积(2)一个四边形的各边长扩大为原来的9倍,这个四边形的面积也扩大为原来的9倍.2021/5/9172、如图,在△ABC中,D、F是AB的三等分点,DE∥FG∥BC,则:1:4:9(1)S△ADE:S△AFG:S△ABC=(2)S△ADE:S梯形DFGE:S梯形FBCG=1:3:52021/5/9183、如图,△ABC,DE//FG//BC,且△ADE的面积,梯形FBCG的面积,梯形DFGE的面积均相等,则△ADE与△ABC的相似比是_______;△AFG与△ABC的相似比是_______.BADECFG2021/5/919例1.如图,在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,若△ABC的边BC上的高为6,面积为

,求△DEF的边EF上的高和面积.解:在△ABC和△DEF中,∵AB=2DE,AC=2DF∴又∠D=∠A∴△DEF∽△ABC,相似比为ABCDEF∵△ABC的边BC上的高为6,面积为∴△DEF的边EF上的高为

,面积为2021/5/920运用例2:如图,△ABC~△A'B'C',它们的周长分别是60厘米和72厘米,且AB=15厘米,B'C'=24厘米。求:BC、AC、A'B'、A'C'。C'B'A'CBA解:因为△ABC~△A'B'C‘所以==ABBCA'B'B'C'6072又AB=15厘米B'C'=24厘米所以A'B'=18厘米BC=20厘米故AC=60–15–20=25(厘米)A'C'=72–18–24=30(厘米)2021/5/921如图,是一块三角形木板,工人师傅要把它切割成:一块为三角形,另一块为梯形,且要使切割出的三角形与梯形的面积之比为4:5,那么该怎么切割呢?ABCDE你会解决引入中的问题了吗?2021/5/922相似三角形的性质对应角相等对应边成比例对应高的比,对应中线的比、对应角平分线的比都等于相似比.相似比等于对应边的比周长的比等于相似比面积的比等于相似比的平方归纳2021/5/9231.已知ΔABC与ΔA’B’C’的相似比为2:3,则周长比为

,对应边上中线之比

,面积之比为

。2.如果两个相似三角形的面积之比为1:9,则它们对应边的比为______,对应角平分线的比为______,周长的比为______。3.如果两个相似三角形的面积之比为2:7,较大三角形一边上的高为7,则较小三角形对应边上的高为______。1:31:31:32:32:34:9随堂练习2021/5/924理解4、已知△ABC∽△A´B´C´,AD、A´D´分别是对应边BC、B´C´上的高,若BC=8cm,B´C´=6cm,AD=4cm,则A´D´等于()A16cmB12cmC3cmD6cm5、两个相似三角形对应高的比为3∶7,它们的对应角平分线的比为()A7∶3B49∶9C9∶49D3∶7CD2021/5/925理解6.把一个三角形变成和它相似的三角形,(1)如果边长扩大为原来的5倍,那么面积扩大为原来的___倍。(2)如果面积扩大为原来的100倍,那么边长扩大为原来的________倍。7.两个相似三角形的一对对应边分别是35厘米和14厘米,(1)它们的周长差60厘米,这两个三角形的周长分别是——————。(2)它们的面积之和是58平方厘米,这两个三角形的面积分别是_____________。2021/5/926运用8.如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?NMQPEDCBA解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。因为PN∥BC,所以△APN∽△ABC所以AEAD=PNBC因此,得x=48(毫米)。答:-------。80–x80=x1202021/5/927运用9.已知梯形ABCD中,AD∥BC,对角线AC、BD交于点O,若△AOD的面积为4cm2,△BOC的面积为9cm2,则梯形ABCD的面积为_________cm2ABCDO解:∴△AOD∽△COBS△AOD:S△COB=4:9∴OD:OB=2:3∴S△AOD:S△AOB=2:3∴S△AOB=6cm2∴梯形ABCD的面积为25cm2∵AD∥BC252021/5/928

10.如图,ABCD中,E为AD的中点,若SABCD=1,则图中阴影部分的面积为()

A、B、C、D、BAEDCFB2021/5/9291、如图,在△ABC中,点D、E分别是AB、AC的中点。(3)若S△DOE=1cm2,求S△OBC,S△OEC和S△ABC.(1)找出图中的各对相似三角形;(2)各对相似三角形的相似比分别是多少?面积的比呢?DCBOAE2021/5/9303.如图,S□ABCD=2008cm2,点E是平行四边形ABCD的边AB的延长线上一点,且,那么S△BEF

=

.ABCDEF2021/5/931

4、如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?NMQPEDCBA解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。∵PN∥BC∴△APN∽△ABC∴AEAD=PNBC因此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论