第三章流体运动理论与动力学基础演示文稿_第1页
第三章流体运动理论与动力学基础演示文稿_第2页
第三章流体运动理论与动力学基础演示文稿_第3页
第三章流体运动理论与动力学基础演示文稿_第4页
第三章流体运动理论与动力学基础演示文稿_第5页
已阅读5页,还剩126页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章流体运动理论与动力学基础演示文稿目前一页\总数一百三十一页\编于二十二点优选第三章流体运动理论与动力学基础目前二页\总数一百三十一页\编于二十二点

2)基本内容(1)正确使用流体流动的连续性方程式;(2)弄清流体流动的基本规律——伯努利方程,得出比较符合客观实际的计算公式;掌握伯努利方程的物理意义、几何意义、使用条件及其应用(3)动量方程的应用2.重点、难点重点:连续性方程、伯努利方程和动量方程。难点:应用三大方程联立求解工程实际问题。目前三页\总数一百三十一页\编于二十二点一、流体运动要素

Conception:表征流体运动状态的物理量,一般包括等。研究流体的运动规律,就是要确定这些运动要素。

1)每一运动要素都随空间与时间在变化;

2)各要素之间存在着本质联系。§3.1流体运动的描述方法**流场——充满运动的连续流体的空间。在流场中,每个流体质点均有确定的运动要素。目前四页\总数一百三十一页\编于二十二点拉格朗日,法国数学家、物理学家。1736年1月25日生于意大利西北部的都灵,1813年4月10日卒于巴黎。19岁就在都灵的皇家炮兵学校当数学教授。在探讨“等周问题”的过程中,他用纯分析的方法发展了欧拉所开创的变分法,为变分法奠定了理论基础。他的论著使他成为当时欧洲公认的第一流数学家。

1766年德国的腓特烈大帝向拉格朗日发出邀请说,在“欧洲最大的王”的宫廷中应有“欧洲最大的数学家”。于是他应邀去柏林,居住达二十年之久。在此期间他完成了《分析力学》一书,建立起完整和谐的力学体系。

1786年,他接受法王路易十六的邀请,定居巴黎,直至去世。

近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。目前五页\总数一百三十一页\编于二十二点欧拉(Euler),瑞士数学家及自然科学家。1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国彼得堡去逝。欧拉出生於牧师家庭,自幼受父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获硕士学位。

欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学中的经典著作。

欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。

目前六页\总数一百三十一页\编于二十二点1).方法概要1、拉格朗日法2).研究对象

流体质点

着眼于流体各质点的运动情况,研究各质点的运动历程,通过综合所有被研究流体质点的运动情况来获得整个流体运动的规律。(“跟踪”的方法)拉格朗日法是将流场中每一流体质点作为研究对象,研究每一个流体质点在运动过程中的位置、速度、加速度及密度、重度、压强等物理量随时间的变化规律。然后将所有质点的这些资料综合起来,便得到了整个流体的运动规律。即将整个流体的运动看作许多流体质点运动的总和。质点的运动要素是初始点坐标和时间的函数。用于研究流体的波动和震荡等

二、研究流体运动的两种方法目前七页\总数一百三十一页\编于二十二点

拉格朗日方法又称随体法,是从分析流场中个别流体质点着手来研究整个流体运动的。这种研究方法,最基本的参数是流体质点的位移,在某一时刻,任一流体质点的位置可表示为:

X=x(a,b,c,t)y=y(a,b,c,t)z=z(a,b,c,t)(3-1)

式中a、b、c为初始时刻任意流体质点的坐标,即不同的a、b、c代表不同的流体质点。对于某个确定的流体质点,a、b、c为常数,而t为变量,则得到流体质点的运动规律。对于某个确定的时刻,t为常数,而a、b、c为变量,得到某一时刻不同流体质点的位置分布。通常称a、b、c为拉格朗日变量,它不是空间坐标的函数,而是流体质点标号。目前八页\总数一百三十一页\编于二十二点

将式(3-1)对时间求一阶和二阶导数,可得任意流体质点的速度和加速度为:

(3-2)

(3-3)同样,流体的密度、压强和温度也可写成a、b、c、的函数,即ρ=ρ(a,b,c,),P=P(a,b,c,),t=t(a,b,c,)。目前九页\总数一百三十一页\编于二十二点1).方法概要2、欧拉法

着眼于流场中各空间点时的运动情况,通过综合流场中所有被研究空间点上流体质点的运动变化规律,来获得整个流场的运动特性。2).研究对象

流场流场:充满运动流体的空间。(“站岗”的方法)欧拉法是以流场中每一空间位置作为研究对目前十页\总数一百三十一页\编于二十二点3).运动描述流速场:压强场:密度场:其他物理量(N)场:(3-4)目前十一页\总数一百三十一页\编于二十二点4).加速度及其他物理量的时间变化率(1)加速度或(3-5)目前十二页\总数一百三十一页\编于二十二点4).加速度及其他物理量的时间变化率(续)(1)加速度当地加速度。表示通过固定空间点的流体质点速度随时间的变化率;迁移加速度。表示流体质点所在空间位置的变化所引起的速度变化率。目前十三页\总数一百三十一页\编于二十二点(2)其他物理量的时间变化率密度:目前十四页\总数一百三十一页\编于二十二点三、两种方法的比较在研究工程流体力学时主要采用欧拉法。

由上述可知,采用欧拉法描述流体的流动,常常比采用拉格朗日法优越,其原因有三。一是利用欧拉法得到的是场,便于采用场论这一数学工具来研究。二是采用欧拉法,加速度是一阶导数,而拉格朗日法,加速度是二阶导数,所得的运动微分方程分别是一阶偏微分方程和二阶偏微分方程,在数学上一阶偏微分方程比二阶偏微分方程求解容易。三是在工程实际中,并不关心每一质点的来龙去脉。基于上述三点原因,欧拉法在流体力学研究中广泛被采用。当然拉格朗日法在研究爆炸现象以及计算流体力学的某些问题中还是方便的。目前十五页\总数一百三十一页\编于二十二点【例3-1】已知用拉格朗日变量表示得速度分布为u=(a+2)et-2,v=(b+2)et-2,且t=0时,x=a,

y=b。求(1)t=3时质点分布;(2)a=2,b=2质点的运动规律;(3)质点加速度。

【解】根据(3-2)式得将上式积分,得上式中c1、c2为积分常数,它仍是拉格朗日变量的函数。利用t=0时,x=a,y=b得c1=-2,c2=-2目前十六页\总数一百三十一页\编于二十二点X=(a+2)et-2t-2y=(b+2)et-2t-2

(1)将t=3代入上式得

X=(a+2)e3-8y=(b+2)e3-8

(2)a=2,b=2时

x=4et-2t-2y=4et-2t-2(3)目前十七页\总数一百三十一页\编于二十二点【例3-2】在任意时刻,流体质点的位置是x=5t2,其迹线为双曲线xy=25。质点速度和加速度在x和y方向的分量为多少?

【解】根据式(3-4)得由式(3-5)得目前十八页\总数一百三十一页\编于二十二点§3.2流场的基本概念按照流体性质分:理想流体的流动和粘性流体的流动不可压缩流体的流动和不可压缩流体的流动按照流动状态分:恒定流动和非恒定流动有旋流动和无旋流动层流流动和紊流流动按照流动空间的坐标数目分:一维流动、二维流动和三维流动目前十九页\总数一百三十一页\编于二十二点一、恒定流动和非恒定流动1.恒定流动流动参量不随时间变化的流动。特点:流场内的速度、压强、密度等参量只是坐标的函数,而与时间无关。即:目前二十页\总数一百三十一页\编于二十二点2.非恒定流动流动参量随时间变化的流动。特点:流场内的速度、压强、密度等参量不仅是坐标的函数,而且与时间有关。即:目前二十一页\总数一百三十一页\编于二十二点二、一维流动、二维流动和三维流动流动参量是几个坐标变量的函数,即为几维流动。一维流动二维流动三维流动1.定义2.实际流体力学问题均为三元流动。工程中一般根据具体情况加以简化。

目前二十二页\总数一百三十一页\编于二十二点一)、迹线流体质点的运动轨迹。是拉格朗日方法研究的内容。1.定义迹线:某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,即液体质点运动时所走过的轨迹线。三、流线和迹线——迹线微分方程,是自变量。(3-6)目前二十三页\总数一百三十一页\编于二十二点二)、流线在同一瞬间,位于某条线上每一个流体微团的速度矢量都与此线在该点的切线重合,则这条线称为流线。适于欧拉方法。1.定义u21uu2133u6545u46u流线目前二十四页\总数一百三十一页\编于二十二点2.流线微分方程u21uu2133u6545u46u流线(3-7)目前二十五页\总数一百三十一页\编于二十二点3.流线的性质(1)流线彼此不能相交。(2)流线是一条光滑的曲线,不可能出现折点。(3)恒定流动时流线形状不变,非恒定流动时流线形状发生变化。v1v2s1s2交点v1v2折点s目前二十六页\总数一百三十一页\编于二十二点【例3-3】有一流场,其流速分布规律为:u=-ky,v=kx,w=0,试求其流线方程。

【解】由于w=0,所以是二维流动,二维流动的流线方程微分为将两个分速度代入流线微分方程得到:

xdx+ydy=0

即积分上式得到x2+y2=c

即流线簇是以坐标原点为圆心的同心圆。目前二十七页\总数一百三十一页\编于二十二点一)、流管流束1.流管流束流管:在流场内任意作一封闭曲线(不是流线),通过封闭曲线上所有各点作流线,所形成的一个封闭的管状曲面称为流管。流束:流管内部的流体称为流束。封闭曲线无限小时所形成的流管四、流管流束流量目前二十八页\总数一百三十一页\编于二十二点2.微元流管微元流管:封闭曲线无限小时所形成的流管微元流管的极限为流线目前二十九页\总数一百三十一页\编于二十二点

任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流。总流可以看作是由无限多个微小流束所组成。

3、总流目前三十页\总数一百三十一页\编于二十二点4、过水断面

与微小流束或总流的流线成正交的横断面称为过水断面。该面积dA或A称为过水面积,单位m2。注意:过水断面可为平面也可为曲面。目前三十一页\总数一百三十一页\编于二十二点5、流量

单位时间内通过某一过水断面的液体体积称为流量。流量常用的单位为米3/秒(m3/s),符号Q表示。

——微小流束流量dQ总流流量6、断面平均流速

总流过水断面上的平均流速ν,是一个想象的流速,如果过水断面上各点的流速都相等并等于ν,此时所通过的流量与实际上流速为不均匀分布时所通过的流量相等,则流速ν就称为断面平均流速。

目前三十二页\总数一百三十一页\编于二十二点

由此可见,通过总流过水断面的流量等于断面平均流速与过水断面面积的乘积,也即过水断面上各点水流均以同一平均流速运动。引入断面平均流速的概念,可以使水流运动的分析得到简化。目前三十三页\总数一百三十一页\编于二十二点五、均匀流与非均匀流一)、

均匀流:当水流的流线为相互平行的直线时,该水流称为均匀流。

均匀流具有以下特性:

1.均匀流的过水断面为平面,且过水断面的形状和尺寸沿程不变。

2.均匀流中,同一流线上不同点的流速应相等,从而各过水断面上的流速分布相同,断面平均流速相等。

3.均匀流过水断面上的动水压强分布规律与静水压强分布规律相同,即在同一过水断面上各点测压管水头为一常数。目前三十四页\总数一百三十一页\编于二十二点二)、非均匀流

若水流的流线不是相互平行的直线该水流称为非均匀流按照流线不平行和弯曲的程度,分为渐变流、急变流两种类型:

1.渐变流

当水流的流线虽然不是相互平行直线,但几乎近于平行直线时称为渐变流(缓变流)。渐变流的极限情况就是均匀流。

2.急变流

若水流的流线之间夹角很大或者流线的曲率半径很小,这种水流称为急变流。注意:渐变流动水压强服从静水压强分布;而急变流动水压强分布特性复杂。目前三十五页\总数一百三十一页\编于二十二点

渐变流和急变流通常边界近于平行直线时水流往往是渐变流。管道转弯、断面突扩或收缩水工建筑物引起水面突变水流为急变流。目前三十六页\总数一百三十一页\编于二十二点六、湿周水力半径1.湿周在有效截面上,流体同固体边界接触部分的周长2.水力半径R=2R=AB+BC+CDABCD=ABCABC有效截面积与湿周之比称为水力半径目前三十七页\总数一百三十一页\编于二十二点

连续性方程是质量守恒定律在流体力学中的应用。我们认为流体是连续介质,它在流动时连续地充满整个流场。在这个前提下,当研究流体经过流场中某一任意指定的空间封闭曲面时,可以断定:若在某一定时间内,流出的流体质量和流入的流体质量不相等时,则这封闭曲面内一定会有流体密度的变化,以便使流体仍然充满整个封闭曲面内的空间;如果流体是不可压缩的,则流出的流体质量必然等于流入的流体质量。上述结论可以用数学分析表达成微分方程,称为连续性方程。§3.3连续性方程目前三十八页\总数一百三十一页\编于二十二点

一、直角坐标系下连续性微分方程式设在流场中任取一个微元平行六面体,其边长分别为dx、dy和dz,如图所示。假设微元平行六面体形心的坐标为x、y、z,在某一瞬时t经过形心的流体质点沿各坐标轴的速度分量为u、v、w,流体的密度为ρ。现讨论流体经六面体各面的流动情况。先分析x轴方向,由式欧拉法可知,u和ρ都是坐标和时间的连续函数,即u=u(x,y,z,t)和ρ=ρ(x,y,z,t)。根据泰勒级数展开式,略去高于一阶的无穷小量,得在d时间内,沿轴方向从左边微元面积dydz流入的流体质量为目前三十九页\总数一百三十一页\编于二十二点图流场中的微元平行六面体目前四十页\总数一百三十一页\编于二十二点

同理可得在dt时间内从右边微元面积dydz流出的流体质量为

上述两者之差为在dt时间内沿x轴方向流体质量的变化,即

目前四十一页\总数一百三十一页\编于二十二点

同理可得,在dt时间内沿y轴和z轴方向流体质量的变化分别为:因此,在dt时间内经过微元六面体的流体质量总变化为由于流体是作为连续介质来研究的,所以上式所表示的六面体内流体质量的总变化,唯一的可能是因为六面体内流体密度的变化而引起的。因此上式应和由于流体密度的变化而产生的六面体内的流体质量变化相等。设开始瞬时流体的密度为ρ,经过dt时间后的密度为目前四十二页\总数一百三十一页\编于二十二点

则可求出在dt时间内,六面体内因密度的变化而引起的质量变化为根据连续性条件,经简化得到式为可压缩流体非定常三维流动的连续性方程。若流体是定常流动,则,上式成为式为可压缩流体定常三维流动的连续性方程。若流体是不可压缩的,不论是定常或非定常流动ρ均(3-8)(3-9)目前四十三页\总数一百三十一页\编于二十二点

为常数,故上式成为上式为不可压缩流体三维流动的连续性的方程。它的物理意义是:在同一时间内通过流场中任一封闭表面的体积流量等于零,也就是说,在同一时间内流入的体积流量与流出的体积流量相等。在流体力学中时常讨论所谓平面(二维)流动,即平行任何一个坐标平面的流动。若这种流动的流动参数(如速度、压强)只沿x、y两个坐标轴方向发生变化,则上式可以写成由于在推导上述连续性方程时,没有涉及作用力的问题,所以不论是对理想流体还是实际流体都是适用的。(3-10)(3-11)目前四十四页\总数一百三十一页\编于二十二点

二、微元流束和总流的连续性方程

在工程上和自然界中,流体流动多数都是在某些周界所限定的空间内沿某一方向流动,即一维流动的问题,所谓一维流动是指流动参数仅在一个方向上有显著的变化,而在其它两个方向上的变化非常微小,可忽略不计。例如在管道中流动的流体就符合这个条件。在流场中取一微元流束。假定流体的运动是连续的、定常的,则微元流管的形状不随时间而改变。又根据流管的特性,流体质点不能穿过流管表面,因此在单位时间内通过微元流管的任一有效截面的流体质量都应相等,即

ρ1V1dA1=ρ2V2dA2=ρVdA=常数式中dA1

、dA2—分别为1、2两个有效截面的面积,m2;目前四十五页\总数一百三十一页\编于二十二点图流场中的微元流束目前四十六页\总数一百三十一页\编于二十二点V1

、V2—分别为dA1和dA2上的流速,也称为真实流速,m/s;

ρ1

、ρ2—分别为和处的流体密度,kg/m3。对于由无限多微元流束所组成的总流(例如流体在管道中的流动),可对式进行积分得

式中A1

和A2—分别为总流1和2两个有效截面的面积,m2。为一维流动积分形式总流的连续性方程。设和是总流两个有效截面l和2上的平均流速,则上式可写成

(3-12)(3-13)目前四十七页\总数一百三十一页\编于二十二点

式中ρ1和ρ2—分别代表截面和上的平均密度,kg/m3。

(3-13)式表示当流动为可压缩流体定常流体动时,沿流动方向的质量流量为一个常数。对不可压缩均质流体常数,则上式成为

(3-14)式为不可压缩流体一维定常流动的总流连续性方程。该式说明一维总流在定常流动条件下,沿流动方向的体积流量为一个常数,平均流速与有效截面面积成反比,即有效截面面积大的地方平均流速小,有效截面面积小的地方平均流速就大。(3-14)目前四十八页\总数一百三十一页\编于二十二点【例3-4】假设有一不可压缩流体三维流动,其速度分布规律为)U=3(x+y3),v=4y+z2,w=x+y+2z。试分析该流动是否连续。

【解】根据(3-10)式

所以故此流动不连续。不满足连续性方程的流动是不存在的

目前四十九页\总数一百三十一页\编于二十二点【例3-5】有一不可压缩流体平面流动,其速度分布规律为u=x2siny,v=2xcosy,试分析该流动是否连续。

【解】根据(3-10)式所以

故此流动是连续的。目前五十页\总数一百三十一页\编于二十二点【例3-6】有一输水管道,如图所示。水自截面1-1流向截面2-2。测得截面1-1的水流平均流速m/s,已知d1=0.5m,d2=1m,试求截面2-2处的平均流速为多少?

【解】由(3-14)式得

(m/s)目前五十一页\总数一百三十一页\编于二十二点图输水管道目前五十二页\总数一百三十一页\编于二十二点一、连续方程(积分形式)本质:质量守恒定律单位质量系统的质量总结目前五十三页\总数一百三十一页\编于二十二点二、连续方程的其它形式定常流动:定常流动条件下,通过控制面的流体质量等于零一维定常流:不可压缩一维定常流:在定常流动条件下,通过流管的任意有效截面的质量流量是常量。在定常流动条件下,通过流管的任意有效截面的体积流量是常量。目前五十四页\总数一百三十一页\编于二十二点

在流动的理想流体中,取出一个微元平行六面体的微团,它的各边长度分别为dx、dy和dz,如图所示。由于是理想流体,没有黏性,运动时不产生内摩擦力,所以作用在流体微团上的外力只有质量力和压强。该压强与静压强一样,垂直向内,作用在流体微团的表面上。假设六面体形心的坐标为x、y、z,压强为p。先分析x方向的运动,在垂直于x轴的左右两个平面中心点上的压强各等于由于是微元面积,所以这些压强可以作为各表面上的§3.4恒定总流的伯努利方程目前五十五页\总数一百三十一页\编于二十二点图推导欧拉运动微分方程用图目前五十六页\总数一百三十一页\编于二十二点

平均压强。设在六面体形心上的单位质量的质量力分量为fx、fy和fz

,则作用在微元平行六面体的流体微团上的质量力在轴方向的分量为fxρdxdydz

又流体微团的加速度在x轴上的投影为,则根据牛顿第二定律得x轴方向的运动微分方程将上式各项除以流体微团的流体质量ρdxdydz,化简后得:同理

(3-16)(3-15)目前五十七页\总数一百三十一页\编于二十二点

这就是理想流体的运动微分方程,早在1755年就为。对于静止的流体u=v=w=0,则由式可以直接得出流体平衡微分方程,即欧拉平衡微分方程式(2-3)。因此欧拉平衡微分方程只是欧拉运动微分方程的一个特例。如果把加速度写成展开式,可将欧拉运动微分方程写成如下形式

(3-17)目前五十八页\总数一百三十一页\编于二十二点

在一般情况下,作用在流体上的质量力fx、fy和fz

是已知的,对理想不可压缩流体其密度ρ为一常数。在这种情况下,上式中有四个未知数u、v、w和p,而上式中有三个方程,再加上不可压缩流体的连续性方程,就从理论上提供了求解这四个未知数的可能性。目前五十九页\总数一百三十一页\编于二十二点

一、理想流体微元流束的伯努利方程理想流体的运动微分方程上式只有在少数特殊情况下才能求解。在下列几个假定条件下:

(1)不可压缩理想流体的定常流动;

(2)沿同一微元流束(也就是沿流线)积分;

(3)质量力只有重力。即可求得理想流体微元流束的伯努利方程。假定流体是定常流动,则有,目前六十页\总数一百三十一页\编于二十二点

因此式可写成

(3-18)

假如流体微团沿流线的微小位移ds在三个坐标轴上的投影为dx、dy和dz。现用dx、dy和dz分别乘以式(3-18)的第一式、第二式和第三式,则可得到目前六十一页\总数一百三十一页\编于二十二点(3-19)

由流线微分方程有

udy=vdxydz=wdywdx=udz

将式(3-19)代入式(3-18)中的对应项,则得(3-20)目前六十二页\总数一百三十一页\编于二十二点(3-21)将式(3-21)的三个方程相加,得到

由于式(3-22)中的dx、dy和dz是流体微团沿流线微小位移ds的三个分量,所以要沿流线(或微元流束)进行积分。(3-22)目前六十三页\总数一百三十一页\编于二十二点

式(3-22)中的假设质量力只有重力,fx=0,fy=0,fz=-g,即z轴垂直向上,oxy为水平面。则式(3-22)可写成

又假设为不可压缩均质流体,即ρ=常数,积分后得

或式(3-23)称为理想流体微元流束的伯努利方程。方程右边的常数对不同的流线有不同的值。该方程的适用范围(3-23)目前六十四页\总数一百三十一页\编于二十二点

是:理想不可压缩均质流体在重力作用下作定常流动,并沿同一流线(或微元流束)。若1、2为同一条流线(或微元流束)上的任意两点,则式(3-23)也可写成在特殊情况下,绝对静止流体V=0,由式(3-24)可以得到静力学基本方程

二、方程的物理意义和几何意义为了进一步理解理想流体微元流束的伯努利方程,现来叙述该方程的物理意义和几何意义。

1、物理意义理想流体微元流束的伯努利方程式(3-24)中,左端(3-24)目前六十五页\总数一百三十一页\编于二十二点

前两项的物理意义,在静力学中已有阐述,即第一项z表示单位重量流体所具有的位势能;第二项p/(ρg)表示单位重量流体的压强势能;第三项V2/(2g)理解如下:由物理学可知,质量为m的物体以速度V运动时,所具有的动能为Mv2/2,则单位重量流体所具有的动能为V2/(2g)即(mV2/2)/(mg)=V2/(2g)。所以该项的物理意义为单位重量流体具有的动能。位势能、压强势能和动能之和称为机械能。因此,伯努利方程可叙述为:理想不可压缩流体在重力作用下作定常流动时,沿同一流线(或微元流束)上各点的单位重量流体所具有的位势能、压强势能和动能之和保持不变,即机械能是一常数,但位势能、压强势能和动能三种能量之间可以相互转换,所以伯努利方程是能量守恒定律在流体力学中的一种特殊表现形式。目前六十六页\总数一百三十一页\编于二十二点2、几何意义图理想流体微元流束的伯努利方程式(3-24)中,左端前两项的几何意义,同样在静力学中已有阐述,即第一项z表示单位重量流体的位置水头,第二项p/(ρg)表示单位重量流体的压强水头,第三项V2/(2g)与前两项一样也具有长度的量纲。它表示所研究流体由于具有速度V,在无阻力的情况下,单位重量流体所能垂直上升的最大高度,称之为速度水头。位置水头、压强水头和速度水头之和称为总水头。由于它们都表示某一高度,所以可用几何图形表示它们之间的关系,如图所示。因此伯努利方程也可叙述为:理想不可压缩流体在重力作用下作定常流动时,沿同一流线(或微元流束)上各点的单位重量流体所具有的位置水头、压强水头和速度水头之和保持不变,即总水头是一常数。目前六十七页\总数一百三十一页\编于二十二点图总水头线和静水头线目前六十八页\总数一百三十一页\编于二十二点皮托管测速仪在工程实际中,常常需要来测量某管道中流体流速的大小,然后求出管道的平均流速,从而得到管道中的流量,要测量管道中流体的速度,可采用皮托管来进行,其测量原理如图所示。在液体管道的某一截面处装有一个测压管和一根两端理想流体恒定元流能量方程的应用目前六十九页\总数一百三十一页\编于二十二点VBAZZ

皮托管测速原理图目前七十页\总数一百三十一页\编于二十二点

开口弯成直角的玻璃管(称为测速管)。将测速管(又称皮托管)的一端正对着来流方向,另一端垂直向上,这时测速管中上升的液柱比测压管内的液柱高h。这是由于当液流流到测速管入口前的A点处,液流受到阻挡,流速变为零,则在测速管入口形成一个驻点A。驻点A的压强PA称为全压,在入口前同一水平流线未受扰动处(例如B点)的液体压强为PB,速度为V。应用伯努利方程于同一流线上的B、A两点,则有则

目前七十一页\总数一百三十一页\编于二十二点

上式表明,只要测量出流体的运动全压和静压水头的差值h,就可以确定流体的流动速度。由于流体的特性,以及皮托管本身对流动的干扰,实际流速比用该式计算出的要小,因此,实际流速为

式中ψ—流速修正系数,一般由实验确定,ψ=0.97。如果测定气体的流速,则无法直接用皮托管和静压管测量出气柱差来,必须把两根管子连接到一个U形差压计上,从差压计上的液面差来求得流速,如图所示,则则得

目前七十二页\总数一百三十一页\编于二十二点图用皮托管和静压管测量气体流速目前七十三页\总数一百三十一页\编于二十二点

考虑到实际情况,

在工程应用中多将静压管和皮托管组合成一件,称为皮托—静压管,又称动压管,习惯上常简称它为皮托管,其示意图如图所示。图中1点为总压测点,2点为静压测点,将总静压孔的通路分别连接于差压计的两端,则差压计的指示为总压和静压的差值,从而可由上式求得测点的流速。皮托-静压管的构造及使用方法。目前七十四页\总数一百三十一页\编于二十二点图皮托-静压管目前七十五页\总数一百三十一页\编于二十二点

实际液体恒定元流的能量方程式——单位重量液体从断面1-1流至断面2-2所损失的能量,称为水头损失。0012目前七十六页\总数一百三十一页\编于二十二点

将构成总流的所有微小流束的能量方程式叠加起来,即为总流的能量方程式。均匀流或渐变流过水断面上动能修正系数,1.05~1.1取平均的hwV→u,§3.5实际液体恒定总流的能量方程目前七十七页\总数一百三十一页\编于二十二点200112

实际液体恒定总流的能量方程式表明:水流总是从水头大处流向水头小处;或水流总是从单位机械能大处流向单位机械能小处。

总水头线测压管水头线

实际液体总流的总水头线必定是一条逐渐下降的线,而测压管水头线则可能是下降的线也可能是上升的线甚至可能是一条水平线。水力坡度J——单位长度流程上的水头损失,测管坡度方程式的物理意义:目前七十八页\总数一百三十一页\编于二十二点应用能量方程式的条件:(1)恒定流;(2)质量力只有重力;

(3)不可压缩流体;(4)在所选取的两个过水断面上,水流应符合渐变流的条件,但所取的两个断面之间,水流可以不是渐变流;(5)在所取的两个过水断面之间,流量保持不变,其间没有流量加入或分出。若有分支,则应对第一支水流建立能量方程式,例如图示有支流的情况下,能量方程为:(6)流程中途没有能量H输入或输出。若有,则能量方程式应为:Q1Q2Q3112233目前七十九页\总数一百三十一页\编于二十二点应用能量方程式的注意点:(1)选取高程基准面;(2)选取两过流断面;所选断面上水流应符合渐变流的条件,但两个断面之间,水流可以不是渐变流。(3)选取计算代表点;(4)选取压强的计算基准;(5)方程中各项单位的统一。能量方程式的应用目前八十页\总数一百三十一页\编于二十二点

例1.如图所示,一等直径的输水管,管径为d=100mm,水箱水位恒定,水箱水面至管道出口形心点的高度为H=2m,若不水流运动的水头损失,求管道中的输水流量。H分析:Q=VA;A=πd2/4所以需要用能量方程式求出V;221100解:对1-1、2-2断面列能量方程式:其中:所以有:可解得:则:答:该输水管中的输水流量为0.049m3/s。目前八十一页\总数一百三十一页\编于二十二点文丘里流量计(文丘里量水槽)1122收缩段喉管扩散段hh1h2h1h2B1B2111222h以管轴线为高程基准面,暂不计水头损失,对1-1、2-2断面列能量方程式:整理得:由连续性方程式可得:或代入能量方程式,整理得:则当水管直径及喉管直径确定后,K为一定值,可以预先算出来。若考虑水头损失,实际流量会减小,则μ称为文丘里管的流量系数,一般约为0.95~0.98目前八十二页\总数一百三十一页\编于二十二点

伯努利方程应用时特别注意的几个问题伯努利方程是流体力学的基本方程之一,与连续性方程和流体静力学方程联立,可以全面地解决一维流动的流速(或流量)和压强的计算问题,用这些方程求解一维流动问题时,应注意下面几点:文丘里流量计实验目前八十三页\总数一百三十一页\编于二十二点

(1)弄清题意,看清已知什么,求解什么,是简单的流动问题,还是既有流动问题又有流体静力学问题。

(2)选好有效截面,选择合适的有效截面,应包括问题中所求的参数,同时使已知参数尽可能多。通常对于从大容器流出,流入大气或者从一个大容器流入另一个大容器,有效截面通常选在大容器的自由液面或者大气出口截面,因为该有效截面的压强为大气压强,对于大容器自由液面,速度可以视为零来处理。

(3)选好基准面,基准面原则上可以选在任何位置,但选择得当,可使解题大大简化,通常选在管轴线的水平面或自由液面,要注意的是,基准面必须选为水平面。

(4)求解流量时,一般要结合一维流动的连续性方程求解。伯努利方程的p1和p2应为同一度量单位,同为绝对压强或者同为相对压强,p1和p2的问题与静力学中的处理完全相同。

(5)有效截面上的参数,如速度、位置高度和压强应为同一点的,绝对不许在式中取有效截面上A点的压强,又取同一有效截面上另一点B的速度。目前八十四页\总数一百三十一页\编于二十二点【例题】有一贮水装置如图所示,贮水池足够大,当阀门关闭时,压强计读数为2.8个大气压强。而当将阀门全开,水从管中流出时,压强计读数是0.6个大气压强,试求当水管直径d=12cm时,通过出口的体积流量(不计流动损失)。

目前八十五页\总数一百三十一页\编于二十二点【解】当阀门全开时列1-l、2-2截面的伯努利方程

当阀门关闭时,根据压强计的读数,应用流体静力学基本方程求出H值目前八十六页\总数一百三十一页\编于二十二点

则代入到上式(m/s)所以管内流量

(m3/s)目前八十七页\总数一百三十一页\编于二十二点【例题】水流通过如图所示管路流入大气,已知:U形测压管中水银柱高差Δh=0.2m,h1=0.72mH2O,管径d1=0.1m,管嘴出口直径d2=0.05m,不计管中水头损失,试求管中流量qv。目前八十八页\总数一百三十一页\编于二十二点【解】首先计算1-1断面管路中心的压强。因为A-B为等压面,列等压面方程得:

(mH2O)

列1-1和2-2断面的伯努利方程目前八十九页\总数一百三十一页\编于二十二点

由连续性方程:

将已知数据代入上式,得

(m/s)管中流量(m3/s)目前九十页\总数一百三十一页\编于二十二点[例题]一救火水龙带,喷嘴和泵的相对位置如图所示。泵出口压力(A点压力)为2个大气压(表压),泵排出管断面直径为50mm;喷嘴出口C的直径20mm;水龙带的水头损失设为0.5m;喷嘴水头损失为0.1m。试求喷嘴出口流速、泵的排量及B点压力。泵

例题示意图目前九十一页\总数一百三十一页\编于二十二点[解]取A、C两断面写能量方程:

通过A点的水平面为基准面,则;(在大气中);水的重度重力加速度;水柱,即

将各量代入能量方程后,得目前九十二页\总数一百三十一页\编于二十二点解得喷嘴出口流速为。而泵的排量为为计算B点压力,取B、C两断面计算,即

通过B点作水平面基准面,则代入方程得解得压力目前九十三页\总数一百三十一页\编于二十二点【例题】风管直径D=100mm,空气重度,在直径d=50mm的喉部装一细管与水池相连,高差H=150mm,当汞测压计中读数时,开始从水池中将水吸入管中,问此时空气流量为多大?目前九十四页\总数一百三十一页\编于二十二点目前九十五页\总数一百三十一页\编于二十二点例题a:注液瓶为了使下部管口的出流量不随时间而变,在上部瓶塞中插人通气管,试分析出流量恒定的原理和调节。 调节:水面不低于通气管下端处,即水面高度不小于a,流量恒定。

原理:出流时,水面下降,但通气管下端处的压强维持为大气压,即通过该处的水平面维持为零压面,由,因为不变,所以流量恒定。 目前九十六页\总数一百三十一页\编于二十二点例题b:烟囱直径d=1.2m,通过烟气流量,烟气密度,空气密度,烟囱的压强损失

了,为了保证进口断面的负压不小于10mm水柱,试计算烟囱的最小高度H。(设进口断面处的烟气速度)解:以进口为1-1断面,出口为2-2断面,过1-1形心的水平面为基准面,列气体能量方程:

(1)

由题意又

代人(1)式,有

其中

代人得

(烟囱的最小高度) 目前九十七页\总数一百三十一页\编于二十二点例题c:水由水箱经一喷口无损失地水平射出,冲击在一块铅直平板上,平板封盖着另一油箱的短管出口。两个出口的中心线重合,其液位高分别为h1

和h2,且h1=1.6m,两出口直径分别为d1=25mm,d2=50mm,当油液的相对密度为0.85时,不使油液泄漏的高度h2应是多大(平板重量不计)?解:建立水箱液面与喷口的能量方程,按照题意有,则水射流的速度为

取图示射流边界为控制体,根据动量原理,平板对射流的作用力为此力即为射流对平板的作用力P1,此外,平板另一侧所受到的静止油液的总压力为P2,为保持平板对油箱短管的密封作用,须使平板在水平方向保持静止状态,根据水平方向力的作用情况,则有即目前九十八页\总数一百三十一页\编于二十二点例题d:设管路中有一段水平(xoy

平面内)放置的变管径弯管,如图所示。已知流量,过流断面1-1上的流速分布为,形心处相对压强,管径;过流断面2-2上的流速分布为,管径,若不计能量损失,试求过流断面形心处相对压强。[注:动能修正系数不等于1.0]。目前九十九页\总数一百三十一页\编于二十二点解:列1-1、2-2断面总流伯努利方程

(1)

代人(1)式

得 目前一百页\总数一百三十一页\编于二十二点目前一百零一页\总数一百三十一页\编于二十二点§3.5恒定总流的动量方程

动量方程推倒

动量方程是动量守恒定律在流体力学中的具体表达。本节讨论流体作定常流动时的动量变化和作用在流体上的外力之间的关系。一般力学中动量定理表述为:物体动量的时间变化率等于作用在该物体上的所有外力的矢量和。在此先建立控制体的概念:所谓控制体是空间的一个固定不变的区域,它的边界面称为控制面。目前一百零二页\总数一百三十一页\编于二十二点

如图,现以总流的一段管段为例。取断面1和2以及其间管壁表面所组成的封闭曲面为控制面,内部的空间为控制体。流体从控制面1流入控制体,从控制面2流出,管壁可看成流管,无流体进出。在t时刻流段所具有的动量为经过dt时段后,流段移动到,这时流段所具有的动量为对定常流有

目前一百零三页\总数一百三十一页\编于二十二点

所以在此流段的总流中任取一元流,设进、出口断面1-1和2-2上的过水面积为dA1、dA2,则

令动量修正系数,则上式可进一步写成其中。将这些关系代入动量定理的表达式中,可得目前一百零四页\总数一百三十一页\编于二十二点

上式为恒定流总流动量方程。它是矢量方程,实际上常用三个坐标轴上的投影式表示,即

应用动量方程解题时要注意以下几点:动量方程是一个矢量方程,经常使用投影式。注意外力、速度和方向问题,它们与坐标方向一致时为正,反之为负。在考虑外力时注意控制体外的流体通过进口断面和出口断目前一百零五页\总数一百三十一页\编于二十二点

面对控制体内流体的作用力。外力中包含了壁面对流体作用力,而求解问题中往往需要确定流体作用在壁面上的力,这两个力按牛顿第三定理。动量修正系数在计算要求精度不高时,常取1。目前一百零六页\总数一百三十一页\编于二十二点适用条件:不可压缩液体、恒定流、过水断面为均匀流或渐变流过水断面、无支流的汇入与分出。如图所示的一分叉管路,动量方程式应为:v3112233ρQ3ρQ1

ρQ2v1v2目前一百零七页\总数一百三十一页\编于二十二点应用动量方程式解决问题的步骤:1.取控制体;2.正确分析受力,未知力设定方向;3.建立坐标系4.右侧为(下游断面的动量)-(上游断面的动量)1122FP1FP2FRFGxzy目前一百零八页\总数一百三十一页\编于二十二点动量方程式在工程中的应用弯管内水流对管壁的作用力水流对建筑物的作用力射流对平面壁的冲击力目前一百零九页\总数一百三十一页\编于二十二点弯管内水流对管壁的作用力管轴水平放置管轴竖直放置1122P1=p1A1P2=p2A·2RGxzyV1V2RzRx沿x方向列动量方程为:沿z方向列动量方程为:沿x方向列动量方程为:沿y方向列动量方程为:P1=p1A1P2=p2A·2RV1V2RyRxxy目前一百一十页\总数一百三十一页\编于二十二点例题一变径弯管,轴线位于同一水平面,转角,直径由dA=200mm变为

dB=150mm,在流量时,压强,求流对AB

段弯管的作用力。不计弯管段的水头损失。解:求解流体与边界的作用力问题,一般需要联合使用连续性方程,能量方程和动量方程。例题附图目前一百一十一页\总数一百三十一页\编于二十二点目前一百一十二页\总数一百三十一页\编于二十二点目前一百一十三页\总数一百三十一页\编于二十二点水流对建筑物的作用力FP1122xFP1=ρgbh12/2FP2=ρgbh22/2FR沿x方向列动量方程为:目前一百一十四页\总数一百三十一页\编于二十二点射流对平面壁的冲击力FPV000VV1122FRV0VVx沿x方向列动量方程为:整理得:目前一百一十五页\总数一百三十一页\编于二十二点例:设有一股自喷嘴以速度v0喷射出来的水流,冲击在一个与水流方向成α角的固定平面壁上,当水流冲击到平面壁后,分成两面股水流流出冲击区,若不计重量(流动在一个水平面上),并忽略水流沿平面壁流动时的摩擦阻力,试推求射流施加于平面壁上的压力FP,并求出Q1和Q2各为多少?FP001122V0V2Q2V1Q1Qα001122V0V2Q2V1Q1QFRxy沿y方向列动量方程为:目前一百一十六页\总数一百三十一页\编于二十二点对0-0、1-1断面列能量方程为:可得:同理有:依据连续性方程有:FP001122V0V2Q2V1Q1Qα001122V0V2Q2V1Q1QFRxy沿x方向列动量方程为:整理得:所以:目前一百一十七页\总数一百三十一页\编于二十二点FP1=p1A1FP2=p2A·2FRV1V2FryFRx目前

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论