版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省达州市重点中学高三4月校际联合期中考试数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为()A. B.C. D.3.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A. B.C. D.4.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}5.已知f(x)=是定义在R上的奇函数,则不等式f(x-3)<f(9-x2)的解集为()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)6.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A. B.C. D.7.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.8.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.9.如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是()A.2019年12月份,全国居民消费价格环比持平B.2018年12月至2019年12月全国居民消费价格环比均上涨C.2018年12月至2019年12月全国居民消费价格同比均上涨D.2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格10.若向量,则()A.30 B.31 C.32 D.3311.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C. D.12.已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足,则目标函数的最小值为__________.14.已知是等比数列,若,,且∥,则______.15.已知实数,满足则的取值范围是______.16.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,,…,,并绘制了如图所示的频率分布直方图.(1)现从年龄在,,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.18.(12分)已知椭圆:()的离心率为,且椭圆的一个焦点与抛物线的焦点重合.过点的直线交椭圆于,两点,为坐标原点.(1)若直线过椭圆的上顶点,求的面积;(2)若,分别为椭圆的左、右顶点,直线,,的斜率分别为,,,求的值.19.(12分)已知等差数列{an}的前n项和为Sn,且(1)求数列{a(2)求数列{1Sn}的前20.(12分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).21.(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数,对于符合题意的任意,当时均有?若存在,求出所有的值;若不存在,请说明理由.22.(10分)已知椭圆的离心率为,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.2、D【解析】
设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,,,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题.3、C【解析】
在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C【点睛】本题考查等比数列求和公式的应用,属于基础题.4、D【解析】
解一元二次不等式化简集合,再由集合的交集运算可得选项.【详解】因为集合,故选:D.【点睛】本题考查集合的交集运算,属于基础题.5、C【解析】
由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.【点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.6、A【解析】
根据题意,,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,,,,,若函数图象的纵坐标不变,横坐标变为原来的倍,则,所以当时,,在有且仅有5个零点,,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.7、B【解析】
由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.8、B【解析】
三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为.故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.9、D【解析】
先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,,,则有,所以D正确.故选:D【点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.10、C【解析】
先求出,再与相乘即可求出答案.【详解】因为,所以.故选:C.【点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.11、D【解析】
本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。12、B【解析】
直线的倾斜角为,易得.设双曲线C的右焦点为E,可得中,,则,所以双曲线C的离心率为.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】
作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出实数x,y满足对应的平面区域如图阴影所示;由z=x+2y﹣1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小.由,得A(﹣1,﹣1),此时z的最小值为z=﹣1﹣2﹣1=﹣1,故答案为﹣1.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题14、【解析】若,,且∥,则,由是等比数列,可知公比为..故答案为.15、【解析】
根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.【详解】.由题意,画出约束条件表示的平面区域如下图所示,令,则如图所示,图中直线所示的两个位置为的临界位置,根据几何关系可得与轴的两个交点分别为,所以的取值范围为.故答案为:【点睛】本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.16、【解析】设,则,由题意可得故当时,由不等式,可得,或求得,或故答案为(三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析,(1)【解析】
(1)根据频率分布直方图及抽取总人数,结合各组频率值即可求得各组抽取的人数;的可能取值为0,1,1,由离散型随机变量概率求法即可求得各概率值,即可得分布列;由数学期望公式即可求得其数学期望.(1)先求得年龄在内的频率,视为概率.结合二项分布的性质,表示出,令,化简后可证明其单调性及取得最大值时的值.【详解】(1)按分层抽样的方法拉取的8人中,年龄在的人数为人,年龄在内的人数为人.年龄在内的人数为人.所以的可能取值为0,1,1.所以,,,所以的分市列为011.(1)设在抽取的10名市民中,年龄在内的人数为,服从二项分布.由频率分布直方图可知,年龄在内的频率为,所以,所以.设,若,则,;若,则,.所以当时,最大,即当最大时,.【点睛】本题考差了离散型随机变量分布列及数学期望的求法,二项分布的综合应用,属于中档题.18、(1)(2)【解析】
(1)根据抛物线的焦点求得椭圆的焦点,由此求得,结合椭圆离心率求得,进而求得,从而求得椭圆的标准方程,求得椭圆上顶点的坐标,由此求得直线的方程.联立直线的方程和椭圆方程,求得两点的纵坐标,由此求得的面积.(2)求得两点的坐标,设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,由此求得的值,根据在椭圆上求得的值,由此求得的值.【详解】(1)因为抛物线的焦点坐标为,所以椭圆的右焦点的坐标为,所以,因为椭圆的离心率为,所以,解得,所以,故椭圆的标准方程为.其上顶点为,所以直线:,联立,消去整理得,解得,,所以的面积.(2)由题知,,,设,.由题还可知,直线的斜率不为0,故可设:.由,消去,得,所以所以,又因为点在椭圆上,所以,所以.【点睛】本小题主要考查抛物线的焦点,椭圆的标准方程和几何性质、直线与椭圆,三角形的面积等基础知识,考查推理论证能力、运算求解能力,化归与转化思想、数形结合思想、函数与方程思想.19、(1)an=2n【解析】
(1)先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果.(2)利用裂项相消法求出数列的和.【详解】解:(1)设公差为d的等差数列{an}且a1+a则有:a1解得:a1=3,所以:a(2)由于:an所以:Sn则:1S则:Tn=1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.20、(1)1;(2)见解析【解析】
(1)分别求得与的导函数,由导函数与单调性关系即可求得的值;(2)由(1)可知当时,,当时,,因而,构造,由对数运算及不等式放缩可证明,从而不等式可证明.【详解】(1)∵函数在上单调递减,∴,即在上恒成立,∴,又∵函数在上单调递增,∴,即在上恒成立,,∴综上可知,.(2)证明:由(1)知,当时,函数在上为减函数,在上为增函数,而,∴当时,,当时,.∴∴即,∴.【点睛】本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题.21、(1);(2).【解析】
(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024届安徽省铜陵市重点名校高三八校联考数学试题(四)
- 九年级语文上册教案全集
- 魔法屋课件教学
- 人教版物理八年级下册 专项训练卷 (一)力、运动和力(含答案)
- 贵州省六盘水市2024-2025学年高一上学期11月期中地理试题(无答案)
- 2024-2025学年北京市顺义区牛栏山一中高三(上)月考物理试卷(10月份)(含答案)
- 搁板置物架市场发展预测和趋势分析
- 套鞋产业规划专项研究报告
- 宠物猫砂箱用除臭剂产业运行及前景预测报告
- 人教版英语八年级下册 暑假复习Unit 8-Unit10 小检测
- 以案说法发言材料范文九篇
- 儿科学智慧树知到课后章节答案2023年下温州医科大学
- 06-地铁区间线缆敷设详细施工方案
- 大象版一年级科学上册 (我的前后左右)新课件
- 对外汉语口语入门篇第7课-你身体好吗
- 10kv及以下供电工程改造施工组织设计
- 《中小学心理健康教育和生命健康关爱工作重点事项清单》
- DB31T 684-2023 养老机构照护服务分级要求
- 学前儿童发展,讲义第二章学前儿童生理的发展
- 环境工程伦理案例分析-以福建紫金矿业有毒废水泄漏事件为例
- VDA6.3过程审核检查表(中英文版)6
评论
0/150
提交评论