版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter7Objective-DeterminationofarealizabletransferfunctionG(z)approximatingagivenfrequencyresponsespecificationisanimportantstepinthedevelopmentofadigitalfilterIfanIIRfilterisdesired,G(z)shouldbeastablerealrationalfunctionDigitalfilterdesignistheprocessofderivingthetransferfunctionG(z)§7.1
DigitalFilterSpecificationsUsually,eitherthemagnitudeand/orthephase(delay)responseisspecifiedforthedesignofdigitalfilterformostapplicationsInsomesituations,theunitsampleresponseorthestepresponsemaybespecifiedInmostpracticalapplications,theproblemofinterestisthedevelopmentofarealizableapproximationtoagivenmagnituderesponsespecification§7.1
DigitalFilterSpecificationsWediscussinthiscourseonlythemagnitudeapproximationproblemTherearefourbasictypesofidealfilterswithmagnituderesponsesasshownbelow§7.1
DigitalFilterSpecificationsAstheimpulseresponsecorrespondingtoeachoftheseidealfiltersisnoncausalandofinfinitelength,thesefiltersarenotrealizableInpractice,themagnituderesponsespecificationsofadigitalfilterinthepassbandandinthestopbandaregivenwithsomeacceptabletolerancesInaddition,atransitionbandisspecifiedbetweenthepassbandandstopband§7.1
DigitalFilterSpecificationsForexample,themagnituderesponse|G(ej)|ofadigitallowpassfiltermaybegivenasindicatedbelow§7.1
DigitalFilterSpecificationsAsindicatedinthefigure,inthepassband,definedby0p,werequirethat|G(ej)|1withanerrorp,i.e.,1-p
|G(ej)|1+p,||pInthestopband,definedbys
,werequirethat|G(ej)|0withanerrors
i.e.,|G(ej)|p,s
||§7.1
DigitalFilterSpecificationsp-passbandedgefrequencys-stopbandedgefrequencyp-peakripplevalueinthepassbands-peakripplevalueinthestopbandSinceG(ej)isaperiodicfunctionofw,and|G(ej)|ofareal-coefficientdigitalfilterisanevenfunctionofwAsaresult,filterspecificationsaregivenonlyforthefrequencyrange0||§7.1
DigitalFilterSpecificationsSpecificationsareoftengivenintermsoflossfunctionG()=-20log10
|G(ej)|indBPeakpassbandripplep=-20log10
(1-p) dBMinimumstopbandattenuations=-20log10
(s)dB§7.1
DigitalFilterSpecificationsMagnitudespecificationsmayalternatelybegiveninanormalizedformasindicatedbelow§7.1
DigitalFilterSpecificationsHere,themaximumvalueofthemagnitudeinthepassbandisassumedtobeunity1/(1+2)-Maximumpassbanddeviation,givenbytheminimumvalueofthemagnitudeinthepassband1/A-Maximumstopbandmagnitude§7.1
DigitalFilterSpecificationsForthenormalizedspecification,maximumvalueofthegainfunctionortheminimumvalueofthelossfunctionis0dBMaximumpassbandattenuation
dBForp<<1,itcanbeshownthatdB§7.1
DigitalFilterSpecificationsInpractice,passbandedgefrequencyFpandstopbandedgefrequencyFsarespecifiedinHzFordigitalfilterdesign,normalizedbandedgefrequenciesneedtobecomputedfromspecificationsinHzusing§7.2SelectionofFilterTypeThetransferfunctionH(z)meetingthefrequencyresponsespecificationsshouldbeacausaltransferfunctionForIIRdigitalfilterdesign,theIIRtransferfunctionisarealrationalfunctionofz-1:H(z)mustbeastabletransferfunctionandmustbeoflowestorderNforreducedcomputationalcomplexity§7.2SelectionofFilterTypeForreducedcomputationalcomplexity,degreeNofH(z)mustbeassmallaspossibleIfalinearphaseisdesired,thefiltercoefficientsmustsatisfytheconstraint:h[n]=h[N-n]ForFIRdigitalfilterdesign,theFIRtransferfunctionisapolynomialinz-1withrealcoefficients:§7.2SelectionofFilterTypeAdvantagesinusinganFIRfilter- (1)Canbedesignedwithexactlinearphase, (2)FilterstructurealwaysstablewithquantizedcoefficientsDisadvantagesinusinganFIRfilter-OrderofanFIRfilter,inmostcases,isconsiderablyhigherthantheorderofanequivalentIIRfiltermeetingthesamespecifications,andFIRfilterhasthushighercomputationalcomplexity§7.3DigitalFilterDesign:
BasicApproachesMostcommonapproachtoIIRfilterdesign–(1)Convertthedigitalfilterspecificationsintoananalogprototypelowpassfilterspecifications(2)DeterminetheanaloglowpassfiltertransferfunctionHa(s)(3)TransformHa(s)intothedesireddigitaltransferfunctionG(z)§7.3DigitalFilterDesign:
BasicApproachesThisapproachhasbeenwidelyusedforthefollowingreasons: (1)Analogapproximationtechniquesarehighlyadvanced (2)Theyusuallyyieldclosed-formsolutions (3)Extensivetablesareavailableforanalogfilterdesign (4)Manyapplicationsrequiredigitalsimulationofanalogsystems§7.3DigitalFilterDesign:
BasicApproachesAnanalogtransferfunctiontobedenotedasHa(s)=Pa(s)/Da(s) wherethesubscript“a”specificallyindicatestheanalogdomainAdigitaltransferfunctionderivedfromHa(s)shallbedenotedasG(z)=P(z)/D(z)§7.3DigitalFilterDesign:
BasicApproachesBasicideabehindtheconversionofHa(s)intoG(z)istoapplyamappingfromthes-domaintothez-domainsothatessentialpropertiesoftheanalogfrequencyresponsearepreservedThusmappingfunctionshouldbesuchthatImaginary(j)axisinthes-planebemappedontotheunitcircleofthez-planeAstableanalogtransferfunctionbemappedintoastabledigitaltransferfunction§7.3DigitalFilterDesign:
BasicApproachesFIRfilterdesignisbasedonadirectapproximationofthespecifiedmagnituderesponse,withtheoftenaddedrequirementthatthephasebelinearThedesignofanFIRfilteroforderNmaybeaccomplishedbyfindingeitherthelength-(N+1)impulseresponsesamples{h[n]}orthe(N+1)samplesofitsfrequencyresponseH(ej)§7.3DigitalFilterDesign:
BasicApproachesThreecommonlyusedapproachestoFIRfilterdesign- (1)WindowedFourierseriesapproach (2)Frequencysamplingapproach (3)Computer-basedoptimizationmethods§7.4IIRDigitalFilterDesign:BilinearTransformationMethodAbovetransformationmapsasinglepointinthes-planetoauniquepointinthez-planeandvice-versaRelationbetweenG(z)andHa(s)isthengivenbyBilineartransformation§7.4IIRDigitalFilterDesign:BilinearTransformationMethodDigitalfilterdesignconsistsof3steps: (1)DevelopthespecificationsofHa(s)byapplyingtheinversebilineartransformationtospecificationsofG(z) (2)DesignHa(s) (3)DetermineG(z)byapplyingbilineartransformationtoHa(s)Asaresult,theparameterThasnoeffectonG(z)andT=2ischosenforconvenience§7.4IIRDigitalFilterDesign:BilinearTransformationMethodMappingofs-planeintothez-plane§7.4IIRDigitalFilterDesign:BilinearTransformationMethodForz=ejwithT=2wehaveor=tan(/2)§7.4IIRDigitalFilterDesign:BilinearTransformationMethodMappingishighlynonlinearCompletenegativeimaginaryaxisinthes-planefrom=-to=0ismappedintothelowerhalfoftheunitcircleinthez-planefromz=-1toz=1Completepositiveimaginaryaxisinthes-planefrom=0to=ismappedintotheupperhalfoftheunitcircleinthez-planefrom
z=1toz=-1
§7.4IIRDigitalFilterDesign:BilinearTransformationMethodNonlinearmappingintroducesadistortioninthefrequencyaxiscalledfrequencywarpingEffectofwarpingshownright§7.4IIRDigitalFilterDesign:BilinearTransformationMethodStepsinthedesignofadigitalfilter- (1)Prewarp(p,s)tofindtheiranalogequivalents(p,s) (2)DesigntheanalogfilterHa(s) (3)DesignthedigitalfilterG(z)byapplyingbilineartransformationtoHa(s)TransformationcanbeusedonlytodesigndigitalfilterswithprescribedmagnituderesponsewithpiecewiseconstantvaluesTransformationdoesnotpreservephaseresponseofanalogfilter§7.4IIRDigitalFilterDesign:BilinearTransformationMethodApplyingbilineartransformationtotheabovewegetthetransferfunctionofafirst-orderdigitallowpassButterworthfilter
Example-Consider§7.4IIRDigitalFilterDesign:BilinearTransformationMethodRearrangingtermsweget where§7.4IIRDigitalFilterDesign:BilinearTransformationMethod forwhich|Ha(j0)|=0|Ha(j0)|=|Ha(j)|=00iscalledthenotchfrequencyIf|Ha(j2)|=|Ha(j1)|=1/2thenB=2-1isthe3-dBnotchbandwidth
Example-Considerthesecond-orderanalognotchtransferfunction§7.4IIRDigitalFilterDesign:BilinearTransformationMethodThenwhere§7.4IIRDigitalFilterDesign:BilinearTransformationMethodExample-Designa2nd-orderdigitalnotchfilteroperatingatasamplingrateof400Hzwithanotchfrequencyat60Hz,3-dBnotchbandwidthof6HzThus0=2(60/400)=0.3Bw=2(6/400)=0.03Fromtheabovevaluesweget
=0.90993=0.587785§7.4IIRDigitalFilterDesign:BilinearTransformationMethodThegainandphaseresponsesareshownbelowThus§7.4IIRDigitalFilterDesign:BilinearTransformationMethodExample-DesignalowpassButterworthdigitalfilterwithp=0.25,s=0.55,p0.5dB,ands15dBThus2=0.1220185,A2=31.622777If|G(ej0)|=0thisimplies20log10|G(ej0.25)|-0.520log10|G(ej0.55)|-15§7.4IIRDigitalFilterDesign:BilinearTransformationMethodPrewarpingwegetp=tan(p/2)=tan(0.25/2)=0.4142136s=tan(s/2)=tan(0.55/2)=1.1708496Theinversetransitionratiois1/k=s/p=2.8266809Theinversediscriminationratiois1/k1=(A2-1)/=15.841979§7.4IIRDigitalFilterDesign:BilinearTransformationMethodThusN=log10(1/k1)/log10(1/k)=2.6586997ChooseN=3Todeterminecweuse|Ha(jp)|2=1/[1+(p/c)2N]=1/(1+2)§7.4IIRDigitalFilterDesign:BilinearTransformationMethodWethengetc=1.419915(p)=0.5881483rd-orderlowpassButterworthtransferfunctionforc=1isHan(s)=1/[(s+1)(s2+s+1)]Denormalizingtogetc=0.588148wearriveatHa(s)=Han(s/0.588148)§7.4IIRDigitalFilterDesign:BilinearTransformationMethodApplyingbilineartransformationtoHa(s)wegetthedesireddigitaltransferfunctionMagnitudeandgainresponsesofG(z)shownbelow:§7.5IIRHighpass,Bandpass,andBandstop
DigitalFilterDesignFirstApproach- (1)PrewarpdigitalfrequencyspecificationsofdesireddigitalfilterGD(z)toarriveatfrequencyspecificationsofanalogfilterHD(s)ofsametype (2)ConvertfrequencyspecificationsofHD(s)intothatofprototypeanaloglowpassfilterHLP(s) (3)Designanaloglowpassfilter
HLP(s)
§7.5IIRHighpass,Bandpass,andBandstop
DigitalFilterDesign(4)ConvertHLP(s)intoHD(s)usinginversefrequencytransformationusedinStep2 (5)DesigndesireddigitalfilterGD(z)byapplyingbilineartransformationtoHLP(s)§7.5IIRHighpass,Bandpass,andBandstop
DigitalFilterDesignSecondApproach- (1)PrewarpdigitalfrequencyspecificationsofdesireddigitalfilterGD(z)toarriveatfrequencyspecificationsofanalogfilterHD(s)ofsametype (2)ConvertfrequencyspecificationsofHD(s)intothatofprototypeanaloglowpassfilterHLP(s)§7.5IIRHighpass,Bandpass,andBandstop
DigitalFilterDesign
(3)DesignanaloglowpassfilterHLP(s) (4)ConvertHLP(s)intoanIIRdigitaltransferfunctionGLP(z)usingbilineartransformation (5)TransformGLP(z)intothedesireddigitaltransferfunctionGD(z)Weillustratethefirstapproach§7.5IIRHighpass,Bandpass,andBandstop
DigitalFilterDesignDesignofaType1ChebyshevIIRdigitalhighpassfilterSpecifications:Fp=700Hz,Fs=500Hz,
p=1dB,s=32dB,FT=2kHzNormalizedangularbandedgefrequenciesp
=2Fp/FT=2700/2000=0.7s
=2Fs/FT=2500/2000=0.5§7.5.1IIRHighpassDigitalFilterDesignAnaloglowpassfilterspecifications:p=1,s=1.926105,p=1dB,s=32dBPrewarpingthesefrequencieswegetFortheprototypeanaloglowpassfilterchoose
p=1Usingwegets=1.962105§7.5.1IIRHighpassDigitalFilterDesignMATLABcodefragmentsusedforthedesign
[N,Wn]=cheb1ord(1,1.9626105,1,32,’s’) [B,A]=cheby1(N,1,Wn,’s’); [BT,AT]=lp2hp(B,A,1.9626105); [num,den]=bilinear(BT,AT,0.5);§7.5.2IIRBandpassDigitalFilterDesignDesignofaButterworthIIRdigitalbandpassfilterSpecifications:p1=0.45,p1=0.65,s1=0.3,s2=0.75,p=1dB,s=40dBPrewarpingweget§7.5.2IIRBandpassDigitalFilterDesignFortheprototypeanaloglowpassfilterwechoosep=1WidthofpassbandWesetWethereforemodifysothatandexhibitgeometricsymmetrywithrespectto§7.5.2IIRBandpassDigitalFilterDesignSpecificationsofprototypeanalogButterworthlowpassfilter:p=1,s=2.3617627,p=1dB,s=40dBUsingweget§7.5.2IIRBandpassDigitalFilterDesignMATLABcodefragmentsusedforthedesign
[N,Wn]=buttord(1,2.3617627,1,40,’s’) [B,A]=butter(N,Wn,’s’); [BT,AT]=lp2bp(B,A,1.1805647,0.777771); [num,den]=bilinear(BT,AT,0.5);§7.5.3IIRBandstopDigitalFilterDesignDesignofanellipticIIRdigitalbandstopfilterSpecifications:s1=0.45,s2=0.65,p1=0.3,p2=0.75,p=1dB,s=40dBPrewarpingweget
Widthofstopband§7.5.3IIRBandstopDigitalFilterDesignFortheprototypeanaloglowpassfilterwechooses=1WethereforemodifysothatandexhibitgeometricsymmetrywithrespecttoWesetUsingweget§7.5.3IIRBandstopDigitalFilterDesignMATLABcodefragmentsusedforthedesign
[N,Wn]=
ellipord(0.4234126,1,1,40,’s’); [B,A]=ellip(N,1,40,Wn,’s’); [BT,AT]=
lp2bs(B,A,1.1805647,0.777771); [num,den]=bilinear(BT,AT,0.5);§7.6
FixedWindowFunctionsUsingataperedwindowcausestheheightofthesidelobestodiminish,withacorrespondingincreaseinthemainlobewidthresultinginawidertransitionatthediscontinuityHann:W[n[=0.5+0.5cos[2n/(2M+1)],-MnMHamming:W[n[=0.54+0.46cos[2n/(2M+1)],-MnM
Blackman:W[n[=0.42+0.5cos[2n/(2M+1)]+0.08cos[4n/(2M+1)]§7.6
FixedWindowFunctionsPlotsofmagnitudesoftheDTFTsofthesewindowsforM=25areshownbelow00.20.40.60.81-100-80-60-40-200w/pGain,dBRectangularwindow00.20.40.60.81-100-80-60-40-200w/pGain,dBHanningwindow00.20.40.60.81-100-80-60-40-200w/pGain,dBHammingwindow00.20.40.60.81-100-80-60-40-200w/pGain,dBBlackmanwindow§7.6
FixedWindowFunctionsMagnitudespectrumofeachwindowcharacterizedbyamainlobecenteredatw=0followedbyaseriesofsidelobeswithdecreasingamplitudesParameterspredictingtheperformanceofawindowinfilterdesignare:MainlobewidthRelativesidelobelevel§7.6
FixedWindowFunctionsMainlobewidthML-givenbythedistancebetweenzerocrossingsonbothsidesofmainlobeRelativesidelobelevelAsl-givenbythedifferenceindBbetweenamplitudesoflargestsidelobeandmainlobe§7.6
FixedWindowFunctionsObserveThus,Passbandandstopbandripplesarethesame§7.6
FixedWindowFunctionsDistancebetweenthelocationsofthemaximumpassbanddeviationandminimumstopbandvalueMLWidthoftransitionbandw=s-p<ML§7.6
FixedWindowFunctionsToensureafasttransitionfrompassbandtostopband,windowshouldhaveaverysmallmainlobewidthToreducethepassbandandstopbandrippled,theareaunderthesidelobesshouldbeverysmallUnfortunately,thesetworequirementsarecontradictory§7.6
FixedWindowFunctionsInthecaseofrectangular,Hann,Hamming,andBlackmanwindows,thevalueofrippled
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学张家界学院《思想道德修养与法律基础》2021-2022学年第一学期期末试卷
- 脑病科护理安全
- 言语治疗呼吸系统
- 皮肤科护理论文
- 二零二四年度智能照明系统合同3篇
- 招商员工入职培训
- 英语探究型活动设计
- 二零二四年度婚姻登记处常用离婚协议参考样式3篇
- 2024年度建设合同:城市供水管道建设合同2篇
- 人音版音乐七年级上册《溜冰圆舞曲》课件
- 科研成果转化协议书
- 2024年度电商企业品牌合作合同5篇
- 企业培训需求
- 湖北省“荆、荆、襄、宜四地七校考试联盟”2024-2025学年高二上学期期中联考英语试卷 含解析
- 山区道路沥青施工方案
- 北京市海淀区2024-2025学年高三第一学期期中练习语文试卷含答案
- 2024年广东佛山三水区乐平镇人民政府政府雇员招聘9人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年山西省文化旅游投资控股集团限公司校园招聘120人高频难、易错点500题模拟试题附带答案详解
- 第二单元《空气》-2024-2025学年三年级上册科学单元测试卷(教科版)
- 突发事件及自救互救学习通超星期末考试答案章节答案2024年
- 2024秋期国家开放大学《政治学原理》一平台在线形考(形考任务四)试题及答案
评论
0/150
提交评论