版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等数学第十二章微分方程1第1页,共37页,2023年,2月20日,星期四微分方程的基本概念第一节2第2页,共37页,2023年,2月20日,星期四引例1.一曲线通过点(1,2),在该曲线上任意点处的解:设所求曲线方程为y=y(x),则有如下关系式:①(C为任意常数)由②得C=1,因此所求曲线方程为②由①得切线斜率为2x,求该曲线的方程.
一、问题的提出3第3页,共37页,2023年,2月20日,星期四引例2在推广某项技术时,若该项技术需要推广的总人数为N,t时刻已掌握技术的人数为P(t),则新技术推广的速度与已推广人数和尚待推广人数成正比,即有方程4第4页,共37页,2023年,2月20日,星期四微分方程:凡含有未知函数的导数或微分的方程叫微分方程.例实质:
联系自变量,未知函数以及未知函数的某些导数(或微分)之间的关系式.二、微分方程的定义5第5页,共37页,2023年,2月20日,星期四微分方程的阶:
微分方程中出现的未知函数的最高阶导数的阶数称之.分类1:常微分方程,偏微分方程.一阶微分方程高阶(n)微分方程分类2:微分方程的分类6第6页,共37页,2023年,2月20日,星期四分类3:线性与非线性微分方程.分类4:单个微分方程与微分方程组.未知函数以及各阶导数都是一次的,线性微分方程7第7页,共37页,2023年,2月20日,星期四微分方程的解:代入微分方程能使方程成为恒等式的函数称之.微分方程的解的分类:三、主要问题-----求方程的解(1)通解:微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同.8第8页,共37页,2023年,2月20日,星期四(2)特解:确定了通解中任意常数以后的解.解的图象:
微分方程的积分曲线.通解的图象:积分曲线族.初始条件:
用来确定任意常数的条件.9第9页,共37页,2023年,2月20日,星期四过定点的积分曲线;一阶:二阶:过定点且在定点的切线的斜率为定值的积分曲线.初值问题:
求微分方程满足初始条件的解的问题.10第10页,共37页,2023年,2月20日,星期四解11第11页,共37页,2023年,2月20日,星期四所求特解为12第12页,共37页,2023年,2月20日,星期四微分方程;微分方程的阶;微分方程的解;通解;初始条件;特解;初值问题;积分曲线;四、小结13第13页,共37页,2023年,2月20日,星期四转化可分离变量微分方程第二节可分离变量方程可分离变量方程14第14页,共37页,2023年,2月20日,星期四可分离变量方程的解法:两边积分,得
15第15页,共37页,2023年,2月20日,星期四设y=(x)是方程①的解,两边积分,得
①则有恒等式
②当G(y)与F(x)可微且G’(y)=g(y)≠0时,说明由②确定的隐函数y=(x)是①的解.则有称②为方程①的隐式通解,或通积分.同样,当F’(x)=f(x)≠0时,上述过程可逆,由②确定的隐函数x=(y)也是①的解.
16第16页,共37页,2023年,2月20日,星期四例1.求微分方程的通解.解:
分离变量得两边积分得即(C为任意常数)或说明:在求解过程中每一步不一定是同解变形,因此可能增、减解.(此式含分离变量时丢失的解y=0)17第17页,共37页,2023年,2月20日,星期四分离变量两边积分得到即为所求的通解。18第18页,共37页,2023年,2月20日,星期四分离变量两边积分得到即为所求的通解。19第19页,共37页,2023年,2月20日,星期四通解为解20第20页,共37页,2023年,2月20日,星期四解:例5:求解逻辑斯谛方程的通解,以及分离变量有积分得整理得代入初始条件得C=1/3,所求解为21第21页,共37页,2023年,2月20日,星期四例6.解初值问题解:分离变量得两边积分得即由初始条件得C=1,(C为任意常数)故所求特解为22第22页,共37页,2023年,2月20日,星期四例7.
求下述微分方程的通解:解:令
则故有即解得(C为任意常数)所求通解:23第23页,共37页,2023年,2月20日,星期四练习:解分离变量即(C<0
)24第24页,共37页,2023年,2月20日,星期四求满足的特解25第25页,共37页,2023年,2月20日,星期四内容小结1.微分方程的概念微分方程;定解条件;2.可分离变量方程的求解方法:说明:
通解不一定是方程的全部解.有解后者是通解,但不包含前一个解.例如,方程分离变量后积分;根据定解条件定常数.解;阶;通解;特解y=–x
及
y=C
26第26页,共37页,2023年,2月20日,星期四思考与练习求下列方程的通解:提示:(1)
分离变量(2)
方程变形为27第27页,共37页,2023年,2月20日,星期四作业P2691(1),(3),(7),(10);
2(3),(4);628第28页,共37页,2023年,2月20日,星期四齐次方程第三节29第29页,共37页,2023年,2月20日,星期四一、齐次方程形如的方程叫做齐次方程.为同次齐次函数(同次齐次函数:若函数满足则称此函数为K次齐次函数)如:30第30页,共37页,2023年,2月20日,星期四31第31页,共37页,2023年,2月20日,星期四令代入原方程得两边积分,得积分后再用代替u,便得原方程的通解.解法:分离变量:32第32页,共37页,2023年,2月20日,星期四例1.解微分方程解:代入原方程得分离变量两边积分得故原方程的通解为(当C=0时,
y=0也是方程的解)(C为任意常数)33第33页,共37页,2023年,2月20日,星期四例2.解微分方程解:则有分离变量积分得代回原变量得通解即说明:
显然
x=0,y=0,y=x也是原方程的解,但在(C为任意常数)求解过程中丢失了.
34第34页,共37页,2023年,2月20日,星期四例3解微分方程微分方程的解为解35第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB11T 271-2014 生活垃圾转运站运行管理规范
- 关于肺癌课件教学课件
- DB11∕T 1797-2020 食品生产企业质量提升指南
- 《短文两篇》导学案-2024-2025学年统编版九年级语文下册同步学与练
- 淮阴工学院《互换性与技术测量1》2023-2024学年第一学期期末试卷
- 金融数据加密机相关项目投资计划书
- 暑假安全教育 主题班会课件-2篇
- 轮胎均匀性试验机相关行业投资方案范本
- 智能城市EPC建设方案
- 外来物种对生态影响评估方案
- 英大传媒投资集团限公司2024年应届毕业生招聘(第一批)高频500题难、易错点模拟试题附带答案详解
- 护士2024思想汇报5篇
- 2024人教版道法七年级上册第二单元:成长的时空大单元整体教学设计
- 肺胀(慢性阻塞性肺病)中医优势病种诊疗方案
- 铁路交通安全主题班会课件
- 数学苏教版四年级(上册)1、解决问题的策略 苏教版(共13张)
- 2023-2024学年北京市某中学七年级上学期期中考试地理试卷(含详解)
- 落实《中小学德育工作指南》制定的实施方案(pdf版)
- 调味品品牌授权销售合作协议(2024年版)
- 2024新华社招考应届高校毕业生(高频重点提升专题训练)共500题附带答案详解
- 人教版体育与健康八年级9武术《健身南拳》参考教学设计
评论
0/150
提交评论