版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGExx建筑大学毕业论文外文文献及译文PAGEPAGE1本科毕业论文外文文献及译文文献、资料题目:MeasurementsandPredictionsofSteady-StateandTransientStressDistributionsinaDieselEngineCylinderHead文献、资料来源:SAE文献、资料发表日期:1999.4院(部):机电工程学院专业:班级:姓名:学号:指导教师:完成日期:PAGEPAGE20外文文献:MeasurementsandPredictionsofSteady-StateandTransientStressDistributionsinaDieselEngineCylinderHeadABSTRACTAcombinedexperimentalandanalyticalapproachwasfollowedinthisworktostudystressdistributionsandcausesoffailureindieselcylinderheadsundersteady-stateandtransientoperation.Experimentalstudieswereconductedfirsttomeasuretemperatures,heatfluxesandstressesunderaseriesofsteady-stateoperatingconditions.Furthermore,byplacinghightemperaturestraingageswithinthethermalpenetrationdepthofthecylinderhead,theeffectofthermalshockloadingunderrapidtransientswasstudied.Acomparisonofoursteady-stateandtransientmeasurementssuggeststhatthesteady-statetemperaturegradientsandtheleveloftemperaturesaretheprimarycausesofthermalfatigueincast-ironcylinderheads.Subsequently,afiniteelementanalysiswasconductedtopredictthedetailedsteady-statetemperatureandstressdistributionswithinthecylinderhead.Acomparisonofthepredictedsteady-statetemperaturesandstressescomparedwellwithourmeasurements.Furthermore,thepredictedlocationofthecrackinitiationpointcorrelatedwellwithexperimentalobservations.Thissuggeststhatavalidatedsteady-stateFEMstressanalysiscanplayaveryeffectiveroleintherapidprototypingofcast-ironcylinderheads.INTRODUCTIONHeavy-dutydieselenginecylinderheadsexperienceseverethermalandmechanicalloading,underbothsteady-stateandtransientengineoperation.Consequently,cylinderheaddesignisverysophisticatedasitneedstohousecomplexcoolingpassagesforensuringcompliancewiththermalstresses,whileprovidingsufficientmechanicalstrengthtowithstandcombustionpressures,andyetaccommodatingintakeandexhaustvalvesandports,andthefuelinjector.Asaresultofdesign,weightandmanufacturingcompromises,cylinderheadsoftenfailinoperationduetocracksthatareinitiatedduetothermalfatigueinregionswherecoolingislimited,suchasinthenarrowbridgebetweenvalves,oraroundtheexhaustvalveseat.Anumberofstudieshavesofarbeenconductedtodevelopanalyticalmethodologiessuitableforrapiddesignandvirtualprototypingofcylinderheads.Thefiniteelementmethodhasbeenthefoundationofmanyoftheanalysesthatpredictthethermalandstressfieldswithinthecylinderhead.However,theaccuracyofsuchanalysescriticallydependsonourunderstandingoftheproblem,andtheaccuracyoftheboundaryconditionsusedintheformulation.Thermalstressesareinducedbyanyofthefollowingcauses:Temperaturegradientsundersteady-stateoperation,includingtheeffectsofcyclictemperaturechangesinthecombustionchamberwallAnincreaseinthemeantemperatureofacomponent,whichaffectstheexpansionanddistortioncharacteristics,thusinducingstressesThermalshockloadingresultingfromasuddenchangeinspeedorloadduringtransients,whichchangetherateofheatfluxfromthegastothecylinderhead.Duetotheinherentdifficultiesinmeasuringstressfieldsnearthecriticalregionsonthefiredecksurface,especiallyundertransientconditions,limitedsetsofmeasurementsthatcanshedlightontheproblemhavebeenreported.AnumericalstudyofthermalshockcalculationsbyKeribarandMorelhasshownthatthermalwavespropagateintocomponentsduringenginetransients,withthesteepnessofthefrontdependingonmaterialthermalproperties.Whileforaceramiccomponentsevereshockloadscancausesurfacecompressivestressestoovershootfinalsteady-statevalues,theeffectwasnotpronouncedinhigherconductivitymaterials.Inordertovalidatethisanalyticalfinding,andattributeappropriatelycausesoffailureincast-ironcylinderheads,acombinedexperimentalandanalyticalapproachisfollowedheretostudystressdistributionsundersteady-stateandtransientoperation.Experimentalstudiesareconductedfirsttomeasuretemperatures,heatfluxesandstressesunderaseriesofsteady-stateandtransientoperatingconditions.Bothbiaxialanduni-axialhightemperaturestraingageshavebeeninsertedwithinthethermalpenetrationdepthofadieselenginecylinderhead.Thestraingageinsertionbeneaththesurfaceofthefiredeckensuresthedurabilityandreliabilityofthesensor.Atthesametime,theplacementwithinthethermalpenetrationdepthallowsforstudyingtheeffectofthermalshockloadingunderrapidtransients,andforcontrastingthosemeasurementswithcorrespondingsteady-statemagnitudes.Subsequently,afiniteelementanalysisisconductedtopredictthesteady-statetemperatureandstressdistributionswithinthecylinderhead.Predictionsarecomparedwithmeasurements,andthepotentialofthemethodtopredicthighstressregionsthatcouldleadtocrackinitiationisexplored.EXPERIMENTALMEASUREMENTSEXPERIMENTALSETUP–Temperature,heatfluxandstressmeasurementswereacquiredonasix-cylinder,naturally-aspirated,direct-injection,Hyundaidieselengine,primarilyusedinbusapplications.TheprimaryspecificationsoftheenginearereportedinTable1.TEMPERATUREANDHEATFLUXSENSORS–Atotalof8steady-statetemperatureandheatfluxprobeswereinstalledaroundtheintakeandexhaustvalveseatsofcylinders#2and#6.Theprobetipsweremountedatadepthof1.0mmbeneaththefiredecksurface,atthelocationsshowninFigs.1and2.AschematicdiagramshowingtheconstructionofthetemperatureandheatfluxprobeisshowninFig.3.TheprobewasmadeofKtypethermocouples.Anear-surface(1.0mmbeneaththefiredeck)andanin-depthjunction(4.0mmbeneaththesurface)makeitpossibletocalculateheatflux.Toenhancethesensitivityofthejunctions,athin(1mmthickness),circularcopperplatewasweldedatthetipofthesensor.Temperatureandheatfluxdatawereacquiredevery1second,underfullload,overaspeedrangefrom1000rpmto2500rpm,every500rpm.Table1.SpecificationofthetestengineDisplacementVolume7545ccBoreXStroke118X115mmCompressionRatio17.5IgnitionOrder1-5-3-6-2-4MaximumTorque475N·m@1500rpmMaximumPower123kW@2200rpmFigure1.TemperatureandheatfluxmeasuringpointsonthefiredeckHIGHTEMPERATURESTRAINGAGES–Formeasuringstresswithinenginecylinderheads,especiallynearthegas-sidesurface,straingageswithhightemperaturedurabilityareneeded.Aspecialprocedurehasbeendevelopedinthisworkforconstructingastraingagesensorplug(seeFig.4)thatissuitableforsuchmeasurements.Thedetailsofthesensorselection,attachmentintheinstrumentationplug,andverificationofitsoperationaredescribednext.Figure2.LocationofsensoronthefiredeckFigure3.SchematicdiagramoftemperatureandheatfluxsensorFigure4.SchematicdiagramillustratingstraingagesensorandcriticaldimensionsTwotypesofhightemperaturestraingages(120and350)wereused.ThespecificationsofthesensorsmadebyMicromeasurementCo.aredescribedinTable2.Accordingtothemanufacturer,theresponsetimeofthestraingageswas300kHz(3.33s).Incaseofthe120straingage,thestraingagewascoatedwithhightemperatureresistancebondafterattachmenttotheinsidesurfaceofacup-shapedplug.Then,thestraingagewasheatedinamicrowaveovenfor3hours.Aftercoolingtoambienttemperature,thestraingagewasrecoatedandre-heatedat150°Cfor3morehours.Incaseofthe350straingage,heatingwasappliedforagrandtotalof4hoursatatemperatureof175°C.Table2.SpecificationsofhightemperaturestraingagesGageTypeWA-06-062TT-120WA-06-60WT-350Resistancein120.0±0.4%350.0±0.4%LotNumberD-A38AD73K44FD121GageFactorAt75°F2.01±0.5%2.07±1.0%RangeCont.Use-75to205°C-269to290°CShortUse-195to260°C370°CFigure5showsapictureofthefinishedhightemperature,straingageplugassembly.Followingconstructionoftheinstrumentationplug,itssensingbehaviorwasexplored.Theplugtemperaturewasvariedbyexposingittoatorch,andrecordedviaanattachedthermocouple.Correspondingstrainreadingswerealsorecorded.Theexperimentallymeasuredstrainversustemperaturecharacteristicwascomparedtotheonepublishedbythemanufacturer,andusedasthebasisforvalidatingthesensorplugbehavior.Figure5.AphotographofhightemperaturestraingageThehighestcomponenttemperatures,andhencethermally-inducedstressesareexperiencedatthecombustionchambersurface.Whileitisdesirabletomeasurestressesonthesurface,sensorsmountedflushwiththesurfacehaveaveryshortlife.Inordertoensurethedurabilityandreliabilityofthestraingagesensorplug,itwasinserted1.5mmbeneaththesurface.Thislocationwasstillwithinthepenetrationdepthofthermaltransientsoriginatingatthegas-sidesurface.Thus,itallowedstudyingtheeffectofthermalshockloadingunderrapidtransients.Atotalof4straingagesensorplugswereinsertedneartheintakeandexhaustvalveseatsofcylinder#2and#4(seeFig.6).Figure6.SchematicdiagramofstraingagepositionThestaingagesinsertedincylinder#4wereofthebiaxialtype,measuringstraininthexandydirections,asdefinedinFig.7.Thestraingagesinsertedincylinder#2wereoftheuni-axialtype,measuringstrainina45°axis.Sincestraingagesignalscanbehighlyaffectedbyevenminuteleadwiremovement,carewasexercisedtoattachthemfirmlytotheenginehead.Steady-statestressesweremeasuredasspeedwasvariedfrom1000rpmto2000rpm,inincrementsof250rpm,underfullload.Transientstressmeasurementswerealsoacquiredevery0.01seconds,whileloadwascycledbetween0and100%forseveralenginespeeds.Figure7.StressmeasurementdirectionsTEMPERATUREANDHEATFLUXMEASUREMENTS–Figures8and9showthesteady-statetemperaturesmeasuredatthefourlocationswithinthefiredeckofcylinders#2and#6,respectively.Inallcases,themeasuredtemperaturesincreaselinearlywithrespecttoenginespeed.Increasingspeedallowslesstimeforheattransfertothecoolantbetweencombustionevents.ThehighesttemperaturevaluesarerecordedatlocationB,followedbythoseatA,C,andD.ItshouldbenotedthatlocationBisbetweentheinjectornozzleholeandtheexhaustvalve.Sincethereisnocoolantpassagenearthatregion,thisexplainswhylocationBreachesthehighesttemperatureofthefourlocationsinvestigated.Ontheotherhand,locationDexperiencesthelowesttemperatureasitisexposedtosignificantforcedcoolingfromtheadjacentcoolantpassageandfromtheinducedfreshair.Figure8.Steady-statewalltemperaturesincylinder#2overarangeofspeedsFigure9.Steady-statewalltemperaturesincylinder#6overarangeofspeedsFigures10and11showthecorrespondingsteady-stateheatfluxescomputedatthesamelocationswithincylinders#2and#6,respectively.Again,heatfluxincreaseslinearlywithenginespeed.TheheatfluxmagnitudesarehigherforpositionsBandC,locatedaroundtheexhaustvalveseat,comparedtothoseatAandD,locatedaroundtheintakevalveseat.Notethatasspeedisincreasing,differentlocationsexperiencedifferentratesofincreaseofheatflux,afactthatisattributedtodifferencesinturbulentgasmotionandcoolantflowpatterns.Whentheheatfluxratesincylinders#2and#6arecompared(seeFigs.10and11),itcanbenoticedthattheformerexperienceshigherheatfluxratesthanthelatter.Thisisattributedtothefactthatthecoolantflowsfirstaroundcylinder#2;bythetimeitreachescylinder#6,thecoolanthaspickedupsomeheatanditstemperaturegraduallyrises,thusreducingthepotentialforheattransferfromcylinder#6.Asaresultofthehigherheatfluxes,thefiredecktemperaturesaroundcylinder#2arelower(byabout10°C)thanthosearoundcylinder#6thatislocatedonthecoolantoutletside.STRESSMEASUREMENTS–Inordertobeabletoisolatetheeffectofpre-loadingonthetotalstressmeasurementsrecordedinafiredenginebythevariousstraingages,stressmeasurementsweretakenduringtheengineassemblyprocess.Measurementsweretakenatthefourstraingagesfollowingthetighteningofeachheadbolt.TheinitialstressvariationisshowninFig.12.Whilethetighteningofdifferentboltsproduceddifferentamountsoftensionandcompressionatthemeasurementlocation,noconsistentpatternwasrevealedbythemeasurements.However,itisimportanttonoticethatpre-loadingproducedanegligiblestress(within±5MPa)atthemeasurementlocations,irrespectiveofdirections.Figure10.Steady-stateheatfluxesincylinder#2overarangeofspeedsFigure11.Steady-stateheatfluxesincylinder#6overarangeofspeedsFigure12.Effectofbolttighteningonpre-loadingstressFigure13showsthesteady-statestressesrecordedbythebi-axialstraingagesatintakeandexhaustvalvelocationsofcylinder#4,aswellasthestressesrecordedbytheuni-axialstraingagesatintakeandexhaustvalvelocationsofcylinder#2.Themeasurementsweretakenoverarangeofenginespeedsandatfullload,i.e.conditionsthatwouldproducethemaximumstressateachspeed.Itmustbenotedthatasenginespeedisincreasedtowardsthemaximumtorquespeed(1500rpm),themeasuredstressesincrease(ordecrease)atafasterrate.Beyondthemaximumtorquespeed,thestressvariationisslight.Bothtensileandcompressivestressesappearsimultaneouslyatthedifferentlocations,asshowninFig.13,thusindicatingthecomplexcharacterofthestressfield.Figure13.Steady-statestressvariationwithrespecttoenginespeedatfullloadThemeasuredstressneartheexhaustvalveseathasnegativevalues(x,ydirections),indicatingacompressioneffect.Thiscouldhavebeenproducedfromatendencyofhightemperatureregions(suchnon-adequatelycooledregionsaroundtheinjectorandthevalvebridge)toexpand,whilesubjectedtomechanicalconstraints.Asaresult,therestofthefiredeckexpandsmoreinrelativeterms,assuggestedbythetensilestressesexperiencedattheothermeasurementlocations.Itmustalsobenotedthat,atthevariousspeeds,theabsolutemagnitudeofthestressesneartheexhaustvalvearetwotothreetimeslargerthanthoseattheintakevalve,foreithercylinder#2or#4.Thiscorrelateswellwiththetwotothreetimeshigherheatfluxmeasuredontheexhaustvalveseatcomparedtothecorrespondingheatfluxontheintakevalveseat(refertoresultsforlocationsBandAinFigs.10and11).Figure14.Transientstressvariationinxandydirectionsatexhaustvalveofcylinder#4Figure15.Transientstressvariationinxandydirectionsatintakevalveofcylinder#4Atransienttestschedulehasalsobeendevelopedinordertoassesstheeffectofthermalshockloadingonthestressesmeasuredatthesamelocationswheresteady-statemeasurementswerereported.Theschedulefollowedengineoperationfromcoldstarttofiringunderaseriesofspeedsandloads.Figures14to16showthetransientstressesrecordedbythebi-axialanduni-axialstraingagesattheinstrumentedlocationsneartheexhaustandintakevalvesofcylinders#4and#2.Allfiguresindicatethesamegeneralcharacteristics.TheperiodfromAtoBindicatestheequilibriumstatewithcoolantatroomtemperatureandnothermallyinducedstresses.Uponturningontheengine(stateB),astepchangeinstresslevelwasobservedatallmeasurementlocations,exceptforthe45°directionaroundtheintakevalveseatofcylinder#2(seefig.16).FromBtoC,temperaturesandthermalstresseswerestabilizedwhiletheenginewasidlingataspeedof700rpm.Thestressescontinuedtoincrease(ordecrease)smoothly,asspeedwasgraduallyincreasedfrom700rpmto1000rpm(CtoD).Figure16.Transientstressvariationin45°directionsatexhaustandintakevalvesofcylinder#2Followingenginewarm-up(fromstateDon),acyclictestpatternwasimposed.Speedwasincreasedfrom1000rpmto2000rpminincrementsof250rpm,whiletheloadwascycledbetweenfullloadandnoloadateachtestspeed.Themeasuredstressesfollowedacyclicpatternasaresultoftheimposedlargeswingsingastemperaturesandgas-sidesurfacetemperatures.Thethermalshockloadingexperiencedbythecylinderheadduringthisseveretransientisevident.Itshouldbenoted,however,thattheabsolutemagnitudesofthestressesrecordedatanyinstantduringthetransientexceedonlymarginallythelevelsthatwouldcorrespondtosteady-stateoperationundereachofthoseconditions.Thisisattributedtothefactthatthermalshockwavespenetratefastintothecast-ironcylinderhead.Followingthecyclicoperation,theenginewasturned-off(stateF),andanabruptchangeinstresslevelswasrecorded.However,someresidualstressesremainedaftershut-off,whichrequiredmorethan7hourstoberelaxed.COMPUTATIONALPREDICTIONSAthree-dimensionalnumericalanalysisbasedonthefiniteelementmethod(FEM)canbeusedtopredictthedetailedsteady-statetemperatureandstressdistributionswithinthecylinderhead.AsynopsisoftheFEMmodel,itsvalidationagainstourmeasurements,andpredictionsusingthemodelarereportedbelow.FEMANALYSIS–Athree-dimensionalfiniteelementmodelofthecylinderheadandblockwascomposed,asshowninFig.17.Mostofthegridelementsareisoparametricsolidbrickwiththerestofthembeingprismelements.Agasketmodel,representedasonerowofelementshasbeeninsertedbetweentheheadandblockmodels.Atotalof12,156nodespointsand7,803elementswereemployedtodescribedtheFEMmodel.Thecylinderheadandblockweremadeofcast-iron,whilethegasketwasassumedtobeanindiumcompositematerial.MaterialpropertiesaresummarizedinTables3and4.Steady-state,heattransferandstressanalyseswereconductedusingthecommercialcodesNISAII(solver)andDISPLAYIII(preandpost-processor).Theheattransferanalysiswasconductedfirst.Subsequently,theheattransferresultswereusedtoperformthestressanalysis.Figure17.3-DFEMmodelofheadandblockTable3.Propertiesofcast-ironTable4.PropertiesofindiumcompositematerialThermalconductivity,k[W/m·K]50.2Thermalconductivity,k[W/m·K]0.17Young’sModulus,E[GPa]120.0Young’sModulus,E[GPa]19.15Poisson’sRatio,0.29Poisson’sRatio,0.4ThermalExpansionCoefficient,[1/K]12.0x10-6ThermalExpansionCoefficient,[1/K]2.7x10-7Fortheheattransferanalysis,theboundaryconditionsshowninTable5werespecified.Thecyclic-meanvaluesofthein-cylindergas-to-wallheattransfercoefficientandbulkgastemperaturewereobtainedfromthecomprehensivethermodynamiccyclesimulationdevelopedbyAssanisandHeywood.TheboundaryconditionsattheintakeandexhaustportwereobtainedbasedonexperimentalcorrelationsreportedbyAnnandandHires.Coolantsideboundaryconditionswerebasedonvaluesreportedintheliterature.Thelowervaluesforthecoolanttemperatureandheattransfercoefficientwereusedinregionsoflowercoolantvelocity,suchasinbetweencylinderbores.Forthestressanalysis,onlythermalstresseswereconsidered.Asmechanicalboundaryconditions,twopointswerefixed(x=y=z=0)insidetheheadbolthole,andtherigidlinkmethodwasapplied.Thegasketcontactsurfacewasassumedtobeunconstrained.Table5.ThermalboundaryconditionsHeatTransferBoundaryVariable1000rpm1500rpm2000rpm2500rpmIn-cylinderh[W/m2·K]404502631753T[K]738762786806Intakeporth[W/m2·K]272350426482T[K]60606060Exhaustporth[W/m2·K]778845893960T[K]749810855894Coolanth[W/m2·K]4000to45004000to45004000to45004000to4500T[K]353to358353to358353to358353to358FEMMODELVALIDATION–InordertovalidatetheFEMmodel,steady-statepredictionsatselectedpointsofthethermalandstressfieldswerecomparedwithmeasurementsrecordedatthesamepoints.AsshowninFig.18,measuredandpredictedsteady-statewalltemperaturescomparefavorablyoverarangeofenginespeeds,bothinmagnitudeandtrend.ComparisonsbetweenmeasuredandpredictedsteadystatestressesareshowninFigs.19and20.Whiletheagreementintrendissatisfactory,somedifferencesinmagnitudeareobserved.Thediscrepanciescanbeattributedtothefollowingreasons.First,experimentaldataincludetheeffectsofboththermalloadingandcombustionpressure.Ontheotherhand,onlythethermaleffectisconsideredinFEManalysis.Nevertheless,therelativelysmalldifferenceinmagnitudesconfirmsthattheeffectofmechanicalstressesisrelativelysmall.Second,thestiffnessofthefiredeckmayhavebeenalteredduetothestraingageinsertionprocess.Third,theFEManalysishasnotaccountedforcylinder-by-cylindervariationinboundaryconditionsduetofactorssuchasmanifoldgasdynamics,coolantmaldistribution,etc.Overall,itisconcludedthattheFEMmodelwiththeappliedboundaryconditionshasthepotentialtocapturethethermalandstressfiledwithinthecylinderheadwithacceptableaccuracy.Figure18.Comparisonbetweenmeasuredandpredictedsteady-statewalltemperaturesoverarangeofenginespeedsFigure19.Comparisonbetweenmeasuredandpredictedsteady-statestressesneartheintakevalve,overarangeofenginespeedsFigure20.Comparisonbetweenmeasuredandpredictedsteady-statestressesneartheexhaustvalve,overarangeofenginespeedsSTEADY-STATEPREDICTIONSOFTHERMALANDSTRESSDISTRIBUTIONS–FEMpredictionsofthesteady-statetemperatureandstressdistributionsinthefiredeckareshowninFig.21forarangeofenginespeedsatfullload.Theisothermplotsa-d,onthelefthandsideFig.21,indicatethattheregionofthefiredeckinthevicinityoftheexhaustvalveseatexperiencesconsiderablyhighertemperatures(80°Cto100°C)thantherestofthefiredeck.Themaximumtemperaturevariesfrom232°Cat1000rpmto312°Cat2500rpmasaresultofincreasingmeangastemperatureandheattransfercoefficientwithincreasedenginespeed.Noticealsothatasspeedisincreasing,thehotregionpropagatesfromtheexhaustvalvesidetotheintakevalveside.Outsidethefiredeck,thecylinderheadfaceexperiencestemperaturesclosetothecoolanttemperature(around80°C),independentofspeed.Itisimportanttoobservethatthelargesttemperaturegradientsoccurbetweentheexhaustvalveseatandtheinjectornozzlehole,andthevalvebridgebetweenthetwovalves.Atthetwolowerenginespeeds,theinjectornozzleholeandthevalvebridgearesurroundedbyuniformlylowertemperatures.However,thepropagationofthehotfrontwithincreasingspeedresultsinanasymmetricexposureofthosecriticalregionstohotandcoldtemperatures.Itisthereforeanticipatedthatthehighestthermalstressesshouldbeconcentratedoneithertheinjectorholeorthevalvebridgeregion,asthermalstresslinearlydependsontemperaturegradient.(a)Predictedisothermsat1000rpm;min=80°C,max=232°C,increment=10.1°C(e)Predictediso-stresscontoursat1000rpm;min=3MPa,max=251MPa,increment=16.5MPa(b)Predictedisothermsat1500rpm;min=80°C,max=263°C,increment=12.2°C(f)Predictediso-stresscontoursat1500rpm;min=3MPa,max=299MPa,increment=19.7MPa(c)Predictedisothermsat2000rpm;min=80°C,max=287°C,increment=13.8°C(g)Predictediso-stresscontoursat2000rpm;min=5MPa,max=354MPa,increment=23.3MPa(d)Predictedisothermsat2500rpm;min=80°C,max=312°C,increment=15.5°C(h)Predictediso-stresscontoursat2500rpm;min=5MPa,max=405MPa,increment=26.7MPaFigure21.Steady-statetemperature[°C]andthermalstress[MPa]distributionsofthefiredeck.Plotse-h,ontherighthandsideofFig.21,showthepredictedthermalstressdistributionswithinthefiredeckasVonMisesstress.Ingeneral,higherlevelsofstressesareexperiencedasspeed,gasandwalltemperaturesincrease,consistentwithcorrespondingpredictionsofthethermalfieldinthefiredeck.Noticehoweverthatateveryspeed,themaximumstressvaluesoccurwherethemaximumtemperaturegradients(andnotwherethemaximumtemperatures)arefound.Hence,thelocationofthemaximumthermalstressesisindeedaroundtheinjectornozzleholeandthevalvebridgeregion,assuggestedfromourpredictionsofthetemperaturegradients.Themaximumstressatthosecriticallocationsincreasesfrom251MPato405MPa,asspeedincreasesfrom1000rpmto2500rpm.Giventhattheyieldstressofheattreatedcast-ironisaround350MPathissuggeststhatregionsofthecylinderheadmaybepronetoplasticdeformationatconditionsover2,000rpmandfullload.Underseverethermalloading,thisplasticdeformationwouldfirstleadtocrackinitiationaroundthenozzleholeandvalvebridge.Indeed,Fig.22showsthatanengineoperatedundersimilarconditionsdevelopedacrackinthecylinderheadfiredeckintheregionbetweentheinjectornozzleholeandtheexhaustvalveseat,thusvalidatingthenumericalpredictions.CONCLUSIONSAcombinedexperimentalandanalyticalapproachwasfollowedinthisworktostudystressdistributionsandcausesoffailureindieselcylinderheadsundersteady-stateandtransientoperation.Experimentalstudieswereconductedfirsttomeasuretemperatures,heatfluxesandstressesunderaseriesofsteady-stateandtransientoperatingconditions.Subsequently,afiniteelementanalysiswasconductedtopredictthedetailedsteady-statetemperatureandstressdistributionswithinthecylinderhead.Thefollowingconclusionscanbedrawnfromourstudy:Figure22.Photographofatypicalcrackinitiationpoint1.Thermalshockloadingplaysaroleinthermalfatigue,alongwithsteady-statetemperaturegradientsandtheleveloftemperatures.Whentheengineisturnedonoroff,andduringperiodsofchangingloadatagivenspeed,thestresslevelchangessignificantly.However,acomparisonofoursteady-stateandtransientmeasurementsindicatesthatstressesrecordedatanyinstantduringaseveretran
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国赛课一等奖初中统编版七年级道德与法治上册《在劳动中创造人生价值》课件
- 2023年大功率多功能电子式电度表项目融资计划书
- 2023年工业涂料水性色浆项目融资计划书
- ASP模拟考试题及答案
- 养老院老人请假外出审批制度
- 《标准成本差异分析》课件
- 《砂卡井的处理方法》课件
- 《传播概念的分享》课件
- 教师教学能力大赛培训合同(2篇)
- 2024年生日蛋糕卡定制及设计服务采购合同模板3篇
- 硒鼓回收处理方案
- 2021-2022学年天津市河西区九年级上期末数学试卷及答案解析
- 书法创作与欣赏智慧树知到期末考试答案章节答案2024年华侨大学
- 经典导读与欣赏-知到答案、智慧树答案
- 基于STM32的智能门锁设计
- 人教部编版八年级数学上册期末考试卷及答案【真题】
- 肺结核病防治知识宣传培训
- 圆锥曲线中定点和定值问题的解题方法市公开课一等奖省赛课微课金奖课件
- 2024年4月自考00015英语(二)试题
- DB11/T 691-2009-市政工程混凝土模块砌体构筑物结构设计规程
- 高三一模作文“文学不是我生命中的唯一”导写
评论
0/150
提交评论