版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.将三粒均匀的分别标有,,,,,的正六面体骰子同时掷出,朝上一面上的数字分别为,,,则,,正好是直角三角形三边长的概率是()A. B. C. D.2.一次函数的图象上有点和点,且,下列叙述正确的是A.若该函数图象交y轴于正半轴,则B.该函数图象必经过点C.无论m为何值,该函数图象一定过第四象限D.该函数图象向上平移一个单位后,会与x轴正半轴有交点3.计算(-ab2)3÷(-ab)2的结果是()A.ab4B.-ab4C.ab3D.-ab34.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y= B.y= C.y= D.y=﹣5.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、66.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A. B. C. D.7.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且AB⊥CD.入口K位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C8.用配方法解下列方程时,配方有错误的是()A.化为 B.化为C.化为 D.化为9.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用张铝片制作瓶身,则可列方程()A. B.C. D.10.下列大学的校徽图案是轴对称图形的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.等腰梯形是__________对称图形.12.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.13.如图,C为半圆内一点,O为圆心,直径AB长为1cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.14.化简二次根式的正确结果是_____.15.某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用______;依据是_____.(答案不唯一,理由支撑选项即可)16.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______17.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.三、解答题(共7小题,满分69分)18.(10分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,求四边形PEFD的面积.19.(5分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.20.(8分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求A、B两种钢笔每支各多少元?(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?21.(10分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.(1)如图1,当0<t<2时,求证:DF∥CB;(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的倍时,直接写出此时点E的坐标.22.(10分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.23.(12分)列方程解应用题:某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?24.(14分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)根据图象写出不等式kx+b﹣≤0的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.2、B【解析】
利用一次函数的性质逐一进行判断后即可得到正确的结论.【详解】解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
把代入得,,则该函数图象必经过点,故B正确;
当时,,,函数图象过一二三象限,不过第四象限,故C错误;
函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
故选B.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.3、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.4、C【解析】
由双曲线中k的几何意义可知据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.【详解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故选C.【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;5、D【解析】
5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案选D.6、B【解析】
根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.7、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A.A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;B.C→A→O→B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C.D→O→C,园丁与入口的距离逐渐增大,不符合;D.O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.8、B【解析】
配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:、,,,,故选项正确.、,,,,故选项错误.、,,,,,故选项正确.、,,,,.故选项正确.故选:.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9、C【解析】
设用张铝片制作瓶身,则用张铝片制作瓶底,可作瓶身16x个,瓶底个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用张铝片制作瓶身,则用张铝片制作瓶底,依题意可列方程故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.10、B【解析】
根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项正确;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(共7小题,每小题3分,满分21分)11、轴【解析】
根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.【详解】画图如下:结合图形,根据轴对称的定义及等腰梯形的特征可知,等腰梯形是轴对称图形.故答案为:轴【点睛】本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.12、1:1【解析】
根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【详解】连接HF,∵四边形ABCD为矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分别为AD、BC边的中点,∴DH=CF,DH∥CF,∵∠D=90°,∴四边形HFCD是矩形,∴△HFG的面积是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,故答案为1:1.【点睛】本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.13、【解析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.【详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1则边BC扫过区域的面积为:故答案为.【点睛】考核知识点:扇形面积计算.熟记公式是关键.14、﹣a【解析】,..15、AA的平均成绩高于B平均成绩【解析】
根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,∴A比B更优秀,∴如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.16、5或【解析】分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.详解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等边三角形,∴BD=AB=6,∴∴∴∵点E在AC上,∴当E在点O左边时当点E在点O右边时∴或;故答案为或.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.17、9【解析】解:360÷40=9,即这个多边形的边数是9三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)1.【解析】
作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH的值;最后根据面积公式得出【详解】解:(1)证明:∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如图,∵PD=PG,∴MG=MD,∵四边形ABCD为矩形,∴PCDM为矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四边形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH==,∴PH=PG﹣GH=﹣=,∴四边形PEFD的面积=DF•PH=×=1.【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值19、(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1.则DE=4+1=2.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.20、(1)A种钢笔每只15元B种钢笔每只20元;(2)方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3)定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得,解得:,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,∴42.4≤z<45,∵z是整数z=43,44,∴90-z=47,或46;∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,∵-4<0,∴W有最大值,∵a为正整数,∴当a=3,或a=4时,W最大,∴W最大==-4×(3-)²+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.21、(1)详见解析;(2)详见解析;(3)详见解析.【解析】
(1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;
(2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;
(3)分为两种情况:根据三角形面积公式求出即可.【详解】(1)证明:如图1.
∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),
∴∠AOB=90°.
∵DP⊥AB于点P,
∴∠DPB=90°,
∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直线DF与CB的位置关系是:DF⊥CB,
证明:延长DF交CB于点Q,如图2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:过M作MN⊥y轴于N,
∵M(4,-1),
∴MN=4,ON=1,
当E在y轴的正半轴上时,如图3,
∵△MCE的面积等于△BCO面积的倍时,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
当E在y轴的负半轴上时,如图4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐标是(0,)或(0,-).【点睛】本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.22、(1)5;(2)1或﹣1.【解析】
(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,据此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024届贵港市重点中学高三年级四月考数学试题
- 采购合同维保内容
- 编制合同心得体会
- 防汛应急演练
- 银行会计主管述职报告
- 辽宁省丹东市七校协作体2024-2025学年高一上学期11月期中地理试题
- 高考班考题昌黎文汇学校2024-2025学年第一学期期中考试高二化学试题
- 放射性示踪在医学影像中的作用
- 风电电缆相关行业投资规划报告范本
- 基础地质勘查服务相关项目投资计划书
- 自动化导论全套课件
- 国家开放大学机电控制工程基础形考二答案
- 危重病人紧急气道管理课件
- 境外就业劳务合同范本(2篇)
- 电缆敷设与绝缘检测记录
- 341农业知识综合三考研近年考试真题汇总(含答案)
- 国家开放大学一网一平台电大《可编程控制器应用实训》形考任务1-7终结性考试题库及答案
- 可摘局部义齿修复最全讲解学习课件
- 2022年标准员考试题库通关300题及答案解析(云南省专用)
- 职业生涯规划(建筑师)-高中生涯规划
- 幼儿园语言文字工作奖惩制度
评论
0/150
提交评论