非常有利于meanshift算法的理解_第1页
非常有利于meanshift算法的理解_第2页
非常有利于meanshift算法的理解_第3页
非常有利于meanshift算法的理解_第4页
非常有利于meanshift算法的理解_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

非常有利于meanshift算法的理解第1页/共86页Agenda

MeanShiftTheoryWhatisMeanShift?DensityEstimationMethodsDerivingtheMeanShiftMeanshiftproperties

ApplicationsClusteringDiscontinuityPreservingSmoothingObjectContourDetectionSegmentationObjectTracking第2页/共86页MeanShiftTheory第3页/共86页IntuitiveDescriptionDistributionofidenticalbilliardballsRegionofinterestCenterofmassMeanShiftvectorObjective:Findthedensestregion第4页/共86页IntuitiveDescriptionDistributionofidenticalbilliardballsRegionofinterestCenterofmassMeanShiftvectorObjective:Findthedensestregion第5页/共86页IntuitiveDescriptionDistributionofidenticalbilliardballsRegionofinterestCenterofmassMeanShiftvectorObjective:Findthedensestregion第6页/共86页IntuitiveDescriptionDistributionofidenticalbilliardballsRegionofinterestCenterofmassMeanShiftvectorObjective:Findthedensestregion第7页/共86页IntuitiveDescriptionDistributionofidenticalbilliardballsRegionofinterestCenterofmassMeanShiftvectorObjective:Findthedensestregion第8页/共86页IntuitiveDescriptionDistributionofidenticalbilliardballsRegionofinterestCenterofmassMeanShiftvectorObjective:Findthedensestregion第9页/共86页IntuitiveDescriptionDistributionofidenticalbilliardballsRegionofinterestCenterofmassObjective:Findthedensestregion第10页/共86页WhatisMeanShift?Non-parametricDensityEstimationNon-parametricDensityGRADIENTEstimation(MeanShift)DataDiscretePDFRepresentationPDFAnalysisPDFinfeaturespaceColorspaceScalespaceActuallyanyfeaturespaceyoucanconceive…Atoolfor:Findingmodesinasetofdatasamples,manifestinganunderlyingprobabilitydensityfunction(PDF)inRN第11页/共86页Non-ParametricDensityEstimationAssumption:ThedatapointsaresampledfromanunderlyingPDFAssumedUnderlyingPDFRealDataSamplesDatapointdensityimpliesPDFvalue!第12页/共86页AssumedUnderlyingPDFRealDataSamplesNon-ParametricDensityEstimation第13页/共86页AssumedUnderlyingPDFRealDataSamples?Non-ParametricDensityEstimation第14页/共86页ParametricDensityEstimationAssumption:ThedatapointsaresampledfromanunderlyingPDFAssumedUnderlyingPDFEstimateRealDataSamples第15页/共86页KernelDensityEstimation

ParzenWindows-GeneralFrameworkKernelProperties:NormalizedSymmetricExponentialweight

decay???Afunctionofsomefinitenumberofdatapointsx1…xnData第16页/共86页KernelDensityEstimation

ParzenWindows-FunctionFormsAfunctionofsomefinitenumberofdatapointsx1…xnDataInpracticeoneusestheforms:orSamefunctiononeachdimensionFunctionofvectorlengthonly第17页/共86页KernelDensityEstimation

VariousKernelsAfunctionofsomefinitenumberofdatapointsx1…xnExamples:EpanechnikovKernelUniformKernelNormalKernelData第18页/共86页KernelDensityEstimationGradientGiveupestimatingthePDF!EstimateONLY

thegradientUsingtheKernelform:Weget:Sizeofwindow第19页/共86页KernelDensityEstimationGradientComputingTheMeanShift第20页/共86页ComputingTheMeanShiftYetanotherKerneldensityestimation!SimpleMeanShiftprocedure:ComputemeanshiftvectorTranslatetheKernelwindowbym(x)第21页/共86页MeanShiftModeDetectionUpdatedMeanShiftProcedure:FindallmodesusingtheSimpleMeanShiftProcedurePrunemodesbyperturbingthem(findsaddlepointsandplateaus)Prunenearby–takehighestmodeinthewindowWhathappensifwereachasaddlepoint?Perturbthemodepositionandcheckifwereturnback第22页/共86页AdaptiveGradientAscentMeanShiftPropertiesAutomaticconvergencespeed–themeanshift

vectorsizedependsonthegradientitself.

Nearmaxima,thestepsaresmallandrefinedConvergenceisguaranteedforinfinitesimal

stepsonlyinfinitelyconvergent,

(thereforesetalowerbound)ForUniformKernel(),convergenceisachievedin

afinitenumberofstepsNormalKernel()exhibitsasmoothtrajectory,but

isslowerthanUniformKernel().第23页/共86页RealModalityAnalysisTessellatethespacewithwindowsRuntheprocedureinparallel第24页/共86页RealModalityAnalysisThebluedatapointsweretraversedbythewindowstowardsthemode第25页/共86页RealModalityAnalysis

AnexampleWindowtrackssignifythesteepestascentdirections第26页/共86页AdaptiveMeanShift第27页/共86页MeanShiftStrengths&WeaknessesStrengths:ApplicationindependenttoolSuitableforrealdataanalysisDoesnotassumeanypriorshape

(e.g.elliptical)ondataclustersCanhandlearbitraryfeature

spacesOnlyONEparametertochoose

h(windowsize)hasaphysical

meaning,unlikeK-MeansWeaknesses:Thewindowsize(bandwidth

selection)isnottrivialInappropriatewindowsizecan

causemodestobemerged,

orgenerateadditional“shallow”

modesUseadaptivewindow

size第28页/共86页MeanShiftApplications第29页/共86页ClusteringAttractionbasin:theregionforwhichalltrajectoriesleadtothesamemodeCluster:AlldatapointsintheattractionbasinofamodeMeanShift:ArobustApproachTowardFeatureSpaceAnalysis,byComaniciu,Meer第30页/共86页Clustering

SyntheticExamplesSimpleModalStructuresComplexModalStructures第31页/共86页Clustering

RealExampleInitialwindowcentersModesfoundModesafterpruningFinalclustersFeaturespace:L*u*vrepresentation第32页/共86页Clustering

RealExampleL*u*vspacerepresentation第33页/共86页Clustering

RealExampleNotalltrajectoriesintheattractionbasinreachthesamemode2D(L*u)spacerepresentationFinalclusters第34页/共86页DiscontinuityPreservingSmoothingFeaturespace:Jointdomain=spatialcoordinates+colorspaceMeaning:treattheimageasdatapointsinthespatialandgrayleveldomainImageData(slice)MeanShiftvectorsSmoothingresultMeanShift:ArobustApproachTowardFeatureSpaceAnalysis,byComaniciu,Meer第35页/共86页DiscontinuityPreservingSmoothingxyzTheimagegraylevels……canbeviewedasdatapointsinthex,y,zspace(joinedspatialAndcolorspace)第36页/共86页DiscontinuityPreservingSmoothingyzFlatregionsinducethemodes!第37页/共86页DiscontinuityPreservingSmoothingTheeffectofwindowsizeinspatialandrangespaces第38页/共86页DiscontinuityPreservingSmoothing

Example第39页/共86页DiscontinuityPreservingSmoothing

Example第40页/共86页ObjectContourDetection

RayPropagationVesselDetectionbyMeanShiftBasedRayPropagation,byTek,Comaniciu,WilliamsAccuratelysegmentvariousobjects(roundedinnature)inmedicalimages第41页/共86页ObjectContourDetection

RayPropagationUsedisplacementdatatoguideraypropagationDiscontinuitypreservingsmoothingDisplacementvectorsVesselDetectionbyMeanShiftBasedRayPropagation,byTek,Comaniciu,Williams第42页/共86页ObjectContourDetection

RayPropagationSpeedfunctionNormaltothecontourCurvature第43页/共86页ObjectContourDetectionOriginalimageGraylevelsalongredlineGraylevelsaftersmoothingDisplacementvectorsDisplacementvectors’derivative第44页/共86页ObjectContourDetection

Example第45页/共86页ObjectContourDetection

ExampleImportanceofsmoothingbycurvature第46页/共86页SegmentationSegment=Cluster,orClusterofClustersAlgorithm:RunFiltering(discontinuitypreservingsmoothing)ClustertheclusterswhicharecloserthanwindowsizeImageData(slice)MeanShiftvectorsSegmentationresultSmoothingresultMeanShift:ArobustApproachTowardFeatureSpaceAnalysis,byComaniciu,Meer/~comanici第47页/共86页Segmentation

Example…whenfeaturespaceisonlygraylevels…第48页/共86页Segmentation

Example第49页/共86页Segmentation

Example第50页/共86页Segmentation

Example第51页/共86页Segmentation

Example第52页/共86页Segmentation

Example第53页/共86页Segmentation

Example第54页/共86页Non-RigidObjectTracking……第55页/共86页Non-RigidObjectTrackingReal-TimeSurveillanceDriverAssistanceObject-BasedVideoCompression第56页/共86页Currentframe……Mean-ShiftObjectTracking

GeneralFramework:TargetRepresentationChooseafeaturespaceRepresentthemodelinthechosenfeaturespaceChooseareferencemodelinthecurrentframe第57页/共86页Mean-ShiftObjectTracking

GeneralFramework:TargetLocalizationSearchinthemodel’sneighborhoodinnextframeStartfromthepositionofthemodelinthecurrentframeFindbestcandidatebymaximizingasimilarityfunc.RepeatthesameprocessinthenextpairofframesCurrentframe……ModelCandidate第58页/共86页Mean-ShiftObjectTracking

TargetRepresentationChooseareferencetargetmodelQuantizedColorSpaceChooseafeaturespaceRepresentthemodelbyitsPDFinthefeaturespaceKernelBasedObjectTracking,byComaniniu,Ramesh,Meer第59页/共86页Mean-ShiftObjectTracking

PDFRepresentationSimilarity

Function:TargetModel(centeredat0)TargetCandidate(centeredaty)第60页/共86页Mean-ShiftObjectTracking

Smoothnessof

SimilarityFunctionSimilarityFunction:Problem:TargetisrepresentedbycolorinfoonlySpatialinfoislostSolution:Maskthetargetwithanisotropickernelinthespatialdomainf(y)becomessmoothinyfisnotsmoothGradient-basedoptimizationsarenotrobustLargesimilarityvariationsforadjacentlocations第61页/共86页Mean-ShiftObjectTracking

FindingthePDFofthetargetmodelTargetpixellocationsAdifferentiable,isotropic,convex,monotonicallydecreasingkernelPeripheralpixelsareaffectedbyocclusionandbackgroundinterferenceThecolorbinindex(1..m)ofpixelxNormalizationfactorPixelweightProbabilityoffeatureuinmodelProbabilityoffeatureuincandidateNormalizationfactorPixelweight0modelycandidate第62页/共86页Mean-ShiftObjectTracking

SimilarityFunctionTargetmodel:Targetcandidate:Similarityfunction:11TheBhattacharyyaCoefficient第63页/共86页Mean-ShiftObjectTracking

TargetLocalizationAlgorithmStartfromthepositionofthemodelinthecurrentframeSearchinthemodel’sneighborhoodinnextframeFindbestcandidatebymaximizingasimilarityfunc.第64页/共86页Linearapprox.(aroundy0)Mean-ShiftObjectTracking

ApproximatingtheSimilarityFunctionModellocation:Candidatelocation:IndependentofyDensityestimate!

(asafunctionofy)第65页/共86页Mean-ShiftObjectTracking

MaximizingtheSimilarityFunctionThemodeof=soughtmaximumImportantAssumption:OnemodeinthesearchedneighborhoodThetargetrepresentationprovidessufficientdiscrimination第66页/共86页Mean-ShiftObjectTracking

ApplyingMean-ShiftOriginalMean-Shift:FindmodeofusingThemodeof=soughtmaximumExtendedMean-Shift:Findmodeofusing第67页/共86页Mean-ShiftObjectTracking

AboutKernelsandProfilesAspecialclassofradiallysymmetrickernels:TheprofileofkernelKExtendedMean-Shift:Findmodeofusing第68页/共86页Mean-ShiftObjectTracking

ChoosingtheKernelEpanechnikovkernel:Aspecialclassofradiallysymmetrickernels:ExtendedMean-Shift:Uniformkernel:第69页/共86页Mean-ShiftObjectTracking

AdaptiveScaleProblem:ThescaleofthetargetchangesintimeThescale(h)ofthekernelmustbeadaptedSolution:Runlocalization3timeswithdifferenthChoosehthatachievesmaximumsimilarity第70页/共86页Mean-ShiftObjectTracking

ResultsFeaturespace:161616quantizedRGBTarget:manuallyselectedon1stframeAveragemean-shiftiterations:4第71页/共86页Mean-ShiftObjectTracking

ResultsPartialocclusionDistractionMotionblur第72页/共86页Mean-ShiftObjectTracking

Results第73页/共86页Mean-ShiftObjectTracking

ResultsFeaturespace:128128quantizedRG第74页/共86页Mean-ShiftObjectTracking

TheScaleSelectionProblemKerneltoobigKerneltoosmallPoorlocalizationhmustn’tgettoobigortoosmall!Problem:Inuniformlycoloredregions,similarityisinvarianttohSmallerhmayachievebettersimilarityNothingkeepshfromshrinkingtoosmall!第75页/共86页TrackingThroughScaleSpace

MotivationSpatiallocalizationforseveralscalesPreviousmethodSimultaneouslocalizationinspaceandscaleThismethodMean-shiftBlobTrackingthroughScaleSpace,byR.Collins第76页/共86页Lindeberg’sTheory

SelectingthebestscalefordescribingimagefeaturesScale-spacerepresentationDifferentialoperatorapplied50strongestresponsesxyσ第77页/共86页Scale-spacerepresentationLindeberg’sTheory

TheLaplacianoperatorforselectingblob-likefeaturesLaplacianofGaussian(LOG)Bestfeaturesareat(x,σ)thatmaximizeL2DLOGfilterwithscaleσxyσ3Dscale-spacerepresentation第78页/共86页Lindeberg’sTheory

Multi-ScaleFeatureSelectionProcessOriginalImage3D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论