版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.以下各图中,能确定的是()A. B. C. D.2.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是(
)A. B. C. D.3.已知方程组,那么x+y的值()A.-1 B.1 C.0 D.54.下列各式计算正确的是()A. B. C. D.5.下列各数是不等式组的解是()A.0 B. C.2 D.36.一元二次方程x2+2x﹣15=0的两个根为()A.x1=﹣3,x2=﹣5B.x1=3,x2=5C.x1=3,x2=﹣5D.x1=﹣3,x2=57.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值()A.总不小于1B.总不小于11C.可为任何实数D.可能为负数8.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.29.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是
A. B. C. D.10.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A. B. C.1 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.不等式>4﹣x的解集为_____.12.分解因式:4m2﹣16n2=_____.13.一个凸边形的内角和为720°,则这个多边形的边数是__________________14.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.15.一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_________16.已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是___.(结果保留π)三、解答题(共8题,共72分)17.(8分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?18.(8分)如图,点A是反比例函数y1=4x与一次函数y2=kx+b在x轴上方的图象的交点,过点A作AC⊥x轴,垂足是点C,AC=OC.一次函数求点A的坐标;若梯形ABOC的面积是3,求一次函数y2=kx+b的解析式;结合这两个函数的完整图象:当y1>19.(8分)先化简,再求值:,其中a为不等式组的整数解.20.(8分)计算:.化简:.21.(8分)计算:sin30°•tan60°+..22.(10分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?23.(12分)如图,AB是⊙O的直径,点C在⊙O上,CE^AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.24.已知PA与⊙O相切于点A,B、C是⊙O上的两点(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
逐一对选项进行分析即可得出答案.【详解】A中,利用三角形外角的性质可知,故该选项错误;B中,不能确定的大小关系,故该选项错误;C中,因为同弧所对的圆周角相等,所以,故该选项正确;D中,两直线不平行,所以,故该选项错误.故选:C.【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.2、D【解析】
根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.3、D【解析】
解:,①+②得:3(x+y)=15,则x+y=5,故选D4、B【解析】A选项中,∵不是同类二次根式,不能合并,∴本选项错误;B选项中,∵,∴本选项正确;C选项中,∵,而不是等于,∴本选项错误;D选项中,∵,∴本选项错误;故选B.5、D【解析】
求出不等式组的解集,判断即可.【详解】,由①得:x>-1,由②得:x>2,则不等式组的解集为x>2,即3是不等式组的解,故选D.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.6、C【解析】
运用配方法解方程即可.【详解】解:x2+2x﹣15=x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.7、A【解析】
利用配方法,根据非负数的性质即可解决问题;【详解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故选:A.【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.8、C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本题选C.【考点】一元二次方程的解;一元二次方程的定义.9、D【解析】
根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.②时,由图像可知此时,即,故②正确.③由对称轴,可得,所以错误,故③错误;④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。10、D【解析】
过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB//CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【详解】解:如图:解:过F作FH⊥AE于H,四边形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四边形AECF是平行四边形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故选D.【点睛】本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、x>1.【解析】
按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.12、4(m+2n)(m﹣2n).【解析】
原式提取4后,利用平方差公式分解即可.【详解】解:原式=4().故答案为【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.13、1【解析】
设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.【详解】解:设这个多边形的边数是n根据多边形内角和公式可得解得.故答案为:1.【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.14、4.1.【解析】
取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.【详解】解:取CD的值中点M,连接GM,FM.∵AG=CG,AE=EB,∴GE是△ABC的中位线∴EG=BC,同理可证:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四边形EFMG是菱形,∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,∴△EGF的面积的最大值为S四边形EFMG=4.1,故答案为4.1.【点睛】本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.15、18π【解析】解:设圆锥的半径为,母线长为.则解得16、8π【解析】
根据圆锥的侧面积=底面周长×母线长÷2公式即可求出.【详解】∵圆锥体的底面半径为2,∴底面周长为2πr=4π,∴圆锥的侧面积=4π×4÷2=8π.故答案为:8π.【点睛】灵活运用圆的周长公式和扇形面积公式.三、解答题(共8题,共72分)17、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【解析】
(1)每星期的销售量等于原来的销售量加上因降价而多销售的销售量,代入即可求解函数关系式;(2)根据利润=销售量(销售单价-成本),建立二次函数,用配方法求得最大值.(3)根据题意可列不等式,再取等将其转化为一元二次方程并求解,根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围,再根据(1)中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【详解】(1)y=300+30(60﹣x)=﹣30x+1.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55时,W最大值=2.∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【点睛】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.18、(1)点A的坐标为(2,2);(2)y=12x+1;(3)x<-4【解析】
(1)点A在反比例函数y1=4x上,AC⊥x轴,(2)梯形面积=12(OB+2)×2=3,求出B点坐标,将点A(3)结合图象直接可求解;【详解】解:(1)∵点A在y1=4x的图像上,∴AC⋅OC=4,∴AC=OC=2∴点A的坐标为(2,2);(2)∵梯形ABOC的面积是3,∴12解得OB=1,∴点B的坐标为(0,1),把点A(2,2)与B(0,1)代入y得2=2k+b解得:k=12,∴一次函数y2=kx+b的解析式为(3)由题意可知,作出函数y1=4设函数y1=4∴联立y1=4∴点E的坐标为(-4,-1)∵y1>y2即∴可将图像分割成如下图所示:由图像可知y1>y2所对应的自变量的取值范围为:【点睛】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求x的取值范围是解题的关键.19、,1【解析】
先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.【详解】解:原式=[﹣]==,∵不等式组的解为<a<5,其整数解是2,3,4,a不能等于0,2,4,∴a=3,当a=3时,原式==1.【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.20、(1)5;(2)-3x+4【解析】
(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.(2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.【详解】(1)解:原式(2)解:原式【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.21、【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=.22、(1)甲种服装最多购进75件,(2)见解析.【解析】
(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75答:甲种服装最多购进75件,(2)设总利润为W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1.①当0<a<10时,10-a>0,W随x增大而增大,∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;②当a=10时,所以按哪种方案进货都可以;③当10<a<20时,10-a<0,W随x增大而减小.当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.【点睛】本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.23、(1)证明见解析;(2)1.【解析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版学校节日庆典活动承包运营合同3篇
- 2025年度个人商标权抵押担保许可协议书4篇
- 二零二五年度高速公路边坡草皮修复合同模板3篇
- 网络素养在学生职业发展中的重要性
- 二零二五年度车辆牌照租赁数据共享协议4篇
- 当代企业网络安全风险评估与防范措施汇报
- 教学资料数字化的应用场景及案例分析
- 二零二五年度承台基坑开挖施工劳务分包合同施工人员资质要求4篇
- 数海导航小学数学知识框架构建
- 安全知识教育在儿童成长中的角色
- T-GDASE 0042-2024 固定式液压升降装置安全技术规范
- 建筑工地春节留守人员安全技术交底
- 默纳克-NICE1000技术交流-V1.0
- 蝴蝶兰的简介
- 老年人心理健康量表(含评分)
- 《小儿静脉输液速度》课件
- 营销人员薪酬标准及绩效考核办法
- 医院每日消防巡查记录表
- 运输企业重大危险源辨识及排查制度
- 运动技能学习与控制课件第五章运动中的中枢控制
- 中心血站改造项目谋划建议书
评论
0/150
提交评论