版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
、 知识点(第十章重积分)0101二重积分的概念010101二重积分的定义010102010103二重积分的物理意义0102重积分的性质010201二重积分的性质010202二重积分的对称性0103二重积分的直角坐标计算法010301用直角坐标计算二重积分010302交换积分次序0104二重积分的极坐标计算法010401二重积分化为极坐标系下二次积分三重积分0201三重积分的概念020101三重积分的概念020102三重积分的性质020103三重积分的对称性0202三重积分的计算用直角坐标计算三重积分用柱面坐标计算三重积分用球面坐标计算三重积分0301几何应用030101计算曲面的面积030102计算立体体积0302物理应用030201计算物体质心030202计算转动惯量030203计算引力[100101][][0.2][][ ][][
f(x,y)DDii,n)
),m
f(,)存i i i
0
i1
i i i(是 )
f(x,y)Df(x,y.D[] i,n)。i[100102][][0.2][][
f(x,y)DDnii,n),
选),m
f(,)i i
0
i1
i i i(i。
i,n) []fxyD上[100103][][0.2][何知识2][][]D面S= .D[]2S.[100104][][较0.3][何含][][何含,坐系下][]D面S,坐系下Drdrd= .D[]S.[100105][][较0.3][何][角坐系下计算][计算][]D(0,0)))三角形区域计算二重积分xy
=___________.D[答案评分标准]16.[100106][填空][易0.2][二重积分物理意义][二重积分计算][二重积分计算,二重积分物理意义][]D其上(xy处面密度(xy如果(xy)在D上连续则薄片质量m= _.[答案评分标准](xy)d ((x).D D[100107][填空][较易0.3][二重积分几何意义][二重积分计算][二重积分几何意义,二重积分计算]根据二重积分
1x2
y2d
=___________ 其中D:x2y2
D1.[答案评分标准]2.3[100108][填空][较易0.3][二重积分几何意义二重积分概念][]
f(t连续函数z0x2y2
1zf(xy)]2所围立体体积可用二重积分表示_.[答案评分标准]x2y2
[f(xy)]2dxdy[100109][填空][较易0.4][二重积分几何意义][][二重积分,极坐标系下二重积分计算][]
D:0r1,02
,1r2rdrd= _.D[答案评分标准]16][][]
fx,yDf(x,y)0,
f(x,y)d
D[]z
f(x,y)D。][0.3][计算][][]D:0y
a2x2,0x
知 a
x2
y2dxdyD= .[]1a36][较0.3][][计算][][]Dx2y2
2,由
2x2
y2dxdy= .D[]4 234 23][较0.4][][计算][][]Dx2y2
2x由
2xx2
y2dxdy= .D[]2.3][较0.3][对称性][计算对称性][]Dx2y2
4y0,x3y2
= .D[0][较0.3][对称性][计算对称性][]
fx,yy轴对称D
f(x,y)f(x,y),则f(x,
=__________.D[0][0.3][][][]D:x2y2a2,y0m为奇数时, xmyn= _.D[0][0.3][][][]D0xaa
ya,n
xmyn= _.D[]0][0.4][交换][][交换次序]f(x,y)1y10 y
f(x交换次序后为_______________.[]1x0 0
f(x,y)dy.][0.4][交换][][交换次序]f(x,y)1yy0 y
f(x,
交换次序后为______________.[]1x
f(x,y)dy0 x2[100120][][0.4][交换][][交换次序][]f(x,y)为连续函数,次axx0 0
f(x,y)dy
交换次序后为_________________.[]ay
f(x,y.0 y[100121][][0.4][][][][]f(x,y)2xx20 0
f(x,y
.[]4y20
f(x,y[100122][][0.4][][][][]f(x,y)1xx
f(x,y
.[]
0 x21y0 y
f(x,yx2[100123][][0.5][下x2[]
f(x,y
在下先对r为 .[]
1 00 0
f(rcos,r)rdr[100124][][0.5][下][][下]aa
dx
a2x2a2x
f(x,y
在下先对r .[]20 0
f(rcos,r)rdr.[编号][][0.5][下][][下][]1x0 0
x
f(x,y
在下先对r为 .[]2d20 0
f(rcos,r)rdr[][][0.7][][][][]Dx2y
1x2y
2x
f(xyDr.3[]33d3
f(r,r)rdr +
d
f(rcos,r)rdr + 02
032d2
f(r,r)rdr 03[][][0.3][][][][]fx[04上连续Dx2y2
4
f(x2
y2
Dr.[]2d0 0
f(r2[][][0.3][几何意义][][计算,几何意义][]
4x2
y2dxdy
= D:x2y
Dy0.[]4.3[][][0.3][几何意义][][计算,几何意义][]根据几何意义 a
x2
y2dxdy =
Dx2y
a2
y
a0.D[]1a3.3[][][0.3][][][,][]D0
x
0
xxD
y2
= .[]13[][][0.4][][][,][]。则质量公式为 .[]M=[][][中等0.6][][直线][,][]D0xx yy。则关于直线 0
0z
为 .[]
0 0|AxByCzD|Ixx)2(yy)2] 0 0
B2
C2[][][0.35][对称性][][]
(ey2|y|1
sin
y3z2x3)dv
则I= 。[]I24[][][0.35][对称性][][]
x2y2z1
[x3ezx2)
= 。[答案及评分标准]I4[编号填空易0.2][重积分的性质三重积分][]
f(x,y,z)在有界闭区域上可积, ,则2I
f(x,y,z)dv
f(x,yz)dv。 1[答案及评分标准]2 1
f(x,y,z)dv[编号填空易0.2][重积分的性质三重积分][]
(x23y2
(3xy1x2)dv2 [答案及评分标准]I(3xy3x23y2)dv2[编号填空][0.4][重积分的物理应用三重积分]设(x,y,z)设M(x,y,z)为其重心,关于xoy平面的静矩定义为:Mxy .[答案及评分标准]
,
M 的三重积分计算式为xyM xy
[][0.4][,][]x2
y2z2
R2
z
f(t((C)
f(x0f(x0
f(xf(x
0
f(x)dv [A[][][0.35][][][][]:x21
y2z2
R2
:x22
y2z2
R2
x
y
z0.u
f(t)是((0(A)
xf(x)dv4xf(x)dv
(B)
f(x
f(xz)dv4 4(C)
f(x
y)dv
2
f(x
y)dv
(D)
1
f(xyz)dv
4
f(xyz)dv 1 2 1 2[](D)[][][0.2][][D
f
mn0i
f,i i
A ; B C ; D 。[]D[][][0.2][][]
x1i n
y12jn
,
j,n
域D:1
x1
y3割成一系列方形(x2y2)dmnni1
nj
D12;nn12;nn )2 )2]n n
n
)2
j 12i)2] ;in
i
j
n n nnmnm
ni1ni1
i 1 1 )2 ; n n n )2n n n[]A[][][0.2][][][][]f(xDAfx,yBDx,yCfDD fD。[]C[][][0.2][][][][]x
i,yn
j,(i,n
jnD0
x1,0
y1割成一系列小正方形则
xydxdy
n i
Di1n
i1
n n n2mn
nnj
ii1n n n2
n i1i1n
i1
n n n2D
nn(i
i)11n
i1
n n n n[]B[][][0.2][][][][]f(x,y)Df(x,y
DA ; B C D 。[答案及评标准]B[][][0.2][][][][]f(x,y)Df(x,y)d
DA ; B C D 。[答案及评标准]C[][][0.3][直角坐标系下计算][]xydx
(D0
x2,0
1)值为D1 1 1 1A B C D6 12 2 4[答案及评标准]B计算][对称性][计算][]若区D为0
x2,|
2,则xy2dx=A 0 B 323
DC 64 D 3[答案及评标准]A计算][性质][计算][]设
fxyx2y
1使x2y2
f(x,y)dx
41x0
x
f(x,y)dy成立f(x,
f(x,
f(x,y)f(x,y)f(x,
f(x,
f(x,
f(x,y)C f(x,f(x,f(x,f(x,D f(x,f(x,
f(x,
f(x,y)[]B[][][0.3][][][][]Dxoyxy1f域1D:xy1f(2,2)y
f(x2,y2DDD1A 2 B 4 C 8 D 12[]B[][][0.3][][][]f(,y)exnx1 0
f(x,y)dy次序结果为eyn1 0
f(x,y)dxeey
y1f(,)x0nxy
f(x,y)dx1y
f(x,y)dx0 1[]D
0 ey[][][0.3][][][]f(,y)1yy322xA 1xx32y2yB0 0yx1322y0 0C 1x232y2yD0 01x232y2y0 00 0[]C]f(x,y)axx0 0
f(x,y)dy
(a0)ay
f(x,y)dx
ay
f(x,y)dx0 0 0 aayaf(x,y)x D ay
f(x,y)dx0 y 0 0]C]f(x,y)1xx0 0
f(x,y
xy1f(x,y)x0 0
1y0 0
f(x,y)dx1y1f(x,y)x0 0
1y0 0
f(x,y)dx]D]f(x,y)0x
x
f(x,y)dy=1yy1f(x,y
2y
1y2f(xy2
x10 1 1 11yy1f(x,y)xy2y21yy1f(x,y)x
2y
f(x,y)dx0 1 y22y2
f(x,y)dx0 1]C][]f(x,y
D:y
x
yx
分f(x,y
可化累D0xx
f(x,y)dyx0xx
f(x,yx1dyy
f(x,y)dx0 y1dyy
f(x,y)dx0 y[]C[][][0.5][下二重积的计算二重积][内容]
f(x,y)1y0
3yy22
f(xy)dx可交换积次序为1x
2xf(x,y)dy
3
3x2
f(x,y)dy0 0 1 021x2
2xf(x,y)dy
2x1f(x,y)y
3
3x
f(x,y)dy0 1x
3x
12f(x,y)dy
0 2 00 2xD 3
f(rr)rdr2 2cos0[]B[][][0.5][下二重积的计算二重积][内容]
fxy为连续函数,则积分1xx2
f(x,y)y2x2
f(x,y)dy0 0 1 0可交换积次序为1y
f(x,y)x2y2
f(x,y)dx0 0 1 01yx
f(x,y)x2y2
f(x,y)dx0 0 1 01y2
f(x,y)dx0 y1y2
f(x,y)dx0 x2[]C[][][较易0.4][极下二重积的计算二重积的计算][]D(x1)2y
1,
f(x,y)dxdy
0 0
Df(rr)rdr22
2co02co0
f(rr)rdrf(rrsin)rdr2D 2d2co20 0
f(rcos,r)rdr[]C[][][0.4][][][][]Dx2y
2x(xy
x2y2dxdyD22con) 2r2 02n)2cor30 022in)d2cor3dr0 022n)2cor3 02[]D[][][0.4][][][][]Dx2y
1,fD上连续函数f(
x2y2)dxdy=D1f(r)01f(r)0C 1f(r2)0D rf(r)0[]A[][][0.4][][][][]I1
xD1
I (x2D
I sin7(x,其3DD
x0,y0,
xy ,
xy1I,I,III I1 2 3
2I I I3 2 1
1 2 3II I1 3 2
I II3 1 2[]C[][][0.4][][][][]2
dxdy1x
IyA I31
B 2I3C 0I D2
1I0[]A[][][0.4][][][][]I1
xy)dD1
I (xy)2d2D
I (xy)dD3Dx0,
y0,
xy xy1I,I,IA I I I3 2 1
2B II I1 2 3
1 2 3II I1 3 2
I II3 1 2[]B[][][0.4][][][]
( )[]DDoyD
f(x,y1 2 1 2D D上连续函数D1 2D
f(x2,A
f(x2,y)dxdy
B
f(x2,D D1 2C D1
f(x2,y)dxdy
D 12D2
f(x2,y)dxdy[]A[][][0.4][][]D1,1,)=A e
De1C 0 D []C[][][0.4][][]Dx2y2
a2
(a)a
a2x2y2dxdyD3234323412A 1 B C D[]B[][][0.4][][]0
x1;0
y1;0
z1
f(xyz
f(xyz。m
f i i i 13
n
i i i 1n
i1
( , , )( )nn n n
n
i1
f( , , )nn n nm
n
f i j k 13
nn
i j k 1n
i1
jk
( , , )( )nn n n
n
i1
j
k
f( , , )nn n n[]C[][][0.4][][]0
x1;0
y1;0z1
f(xyz有界函数。若m
n
f i j k 13n
i1
jk
( , , )( nn n n
I则A f(x,y,z)积 B f(x,y,z)一定
f(xyzI0
f(xyz必试题答案及评分标准]B]试题内容F(xyz有界闭域(xy
f(x,y,
(x,y,z),则:1 2F(x,y,f(x,y,f(x,y,1 2 A 式成立 B 式成立C f(x,y,时成立 D1
f(xy也未必成立1试题答案及评分标准]C]试题内容设,是空间有界闭区域,
f(xyz, , 2
f(x,y,
f(x,y,
f(x,y,z)dv的充要条件是 3 1 2A f(x,y,z)是奇函数 B4
f(x,y,z)0
(x,y,4C 4
D
f(x,y,z)dv0试题答案及评分标准]D
4答( )]试题内容设f(xyz是一全空间的连续函数,由中值定理
f(x,y,
f(,,V.(,,而V为的体,则:A f(xyzxyz为奇函数时B f(,,)0
f(,,)0若x2y2
1
f(,,)
f(0,0,0)f(,,xyz的奇偶性无必然联系试题答案及评分标准]D[][][0.3][三重积分的性质三重积分的性质]
( )[内容]设uf(t在(是上半单位x2y2
1,z0,
I
f(xy,则A I0
B I0I0
I的符不定[案及评分标准]B[][][0.3][三重积分的性质三重积分的性质][内容]设u
ft)是(,)|x1,|y1,|z1
I
f
a,b,c为常数,则I0
I0I0 D I的符由ac确定[案及评分标准]C[][][0.3][三重积分的性质三重积分的性质]
( )[内容]设uf(t是(上严格单调减少的奇函数,I x2y2z2A I0
kf(xyz
k0B
I0C I0 D 当k0I0;当k0I0[案及评分标准]A[][][0.3][三重积分的性质三重积分的性质]
( )内容为单位球体
x2y2
1
位于1
z
部分的半球体,I(xyf(x2y2z2,则I0
I0I0
D I(xyf(x2y2z21[案及评分标准]C[][][0.3][][][][]x2y2I
1,
f(x,y,)
x2(x,y2,,A 4 x2y2z2y0,z0
x2(x,y2,z3
B 4 x2y2z2x0,y0
x2yzf(x,y2,z3)dvC 2 x2y2z2z0
x2(x,y2,z3D 0[]D[][][0.4][][][][ ] Ie1
x2y2z2dv ,
I x2y2z2,2I 3
x2y2z2,z
x2y2
x2y2
1I,1
I, I2 3A. II1
I; B3
II1
I; C2
I II; D.I I2 1 3 3
I.1[]B[][][0.4][][][][]1
:x2y2
R2
z0;2
:x2y2
R2;x0,y0,z0.则A dvx99dv
. B y99dvdv Cx9v4y9C
1()9v 4() . . 99 1 2[]A
1 2( )[][][0.5][][][][]x0
y0
z02xyz1
则
f(x,y,z)dvA 1y1x2x0 0 0
f(x,y,2B 1yyx2x20 0 0
f(x,y,z)dz2C 1y1x20 0 0
f(x,y,z)dz2D 1dz1dx220 0 0
f(x,y,z)dy]B]3x2y2
z
z1x2
f(xyz1414z2
f(xyzy23zy23zy23zy23Af xyz
(, , )
21
(, , )1y2B2dx dy f xyz0 z 1y2B2dx dy f xyz14z214z221x y3x2y2f(,14z214z22
y y2 f(,y,)1 2
1z2
2
3x2y22121y2D( )]zx2y2, yx, y0,z1一卦限部f(x,y,z)A1A1yy2x1 f(x,y,)Bdx 22 yy10yx2y20yx2y2
f(xy2
f(x,y,z)dzC dy 22 yx1 C dy 22 yx1 f(,y,D22dy1y2x10yx2y20y0]C]
( )x2y2
2z,
zx2y2确定立体体A 1r
1r2dz
B rr
1r2dz0 0 r2 0 0 11r2C 1rr2 z D 1rr21r20 0 []C
0 0 r2[][][0.5][三重积化为三次积三重积的计算][内容]设x2y2(z于
f(t
f(x2y2z2)dvA d1f(r2)r2n0 0 0C d1f(2rs)r2n0 0 0
Bd1f(r2rs)r2n0 0 02D2d1f(2rs)r2sindr20 0 0[]Bx2y2[][][0.5][三重积化为三次积x2y2[内容]设是由1x2y2
4; z
2 2
f(z)dv于2 A 4d2 0 0 1
f(r)r2sindr
B d0 0 1
f(rcos)r2sindr2C 2d0 0 12
f(cos)r2sindr
D 2d20 0 2
4r2
f(rcos)r2sindr[]A[][][0.4][][][][]
f(xyxy2D0
1, 0
1。[答案及评准]D
f(x,y)dx
1xx1y2y1 50 0 6而D当面1, 71f(x,y)D.6 10[][][0.2][次][][次]3y2(x2)x1 1[答案及评准]1原式(31)(3
x3x)2 712(78 3 3[][][0.2][次][][次]4x2
ydy.[答案及评准]43xdx
2 x x522=9. 10[][][0.2][次][][次]2ynyexx.1 0[答案及评准]21
1)dy1 102[][][0.2][次][][次]2 2 []x1 0
xydy.[答案及评准]原式
221dx 531x22 103[][][0.2][次][][次]axxy.0 0[]a 50a2 a 10a23[][][0.2][下二次积的二次积的]2y2x.0 0[]2y2x 50 0=4. 10[][][0.2][下二次积的二次积的]9x41 0
xydy.[]9
xdx4
51 0832= . 109[][][0.2][下二次积的二次积的][内容]
x
y4dy20 cosx[]220
151dx 5=8. 1010 75[][][0.3][下二次积的][][二次积的]xsxy2ny0 0[]1n1s)3x 5304= . 103[][][0.3下二重积的二重积的][内容]
ysyx2n
ydx2 02[]2922
sin
ycos3
5=12. 105[][][0.3][下二重积分的][][二重积分的][内容]D
11y2
d,Dx2,|y1.[答案及评分准]2x1 1 y 52 11y2=42arctan1.. 10[][][0.2][下二重积分的二重积分的][内容]
D:0
x1,0
y2.D[答案及评分准]1x2y 40 01x2y. 70 0=1 10[][][0.2][下二重积分的二重积分的][内容]
,
D:0
xa,0
yb.D[答案及评分准]=a
dxb
50 024(ab)3 29[][][0.2][下二重积分的二重积分的][内容]D
y d,D01x
x1,0
y2.[答案及评分准]1 1 x2y 501x 02ln2 [][][0.2][下二重积分的二重积分的][内容]ex,
D:0
x1,0
y1.D[答案及评分准]1exx1eyy 50 0(e[][][0.2][下二重积分的二重积分的][内容]D
x21y2
,D0
x1,0
y1.[答案及评分准]1x2x1 1 y 50 01y218 1012[][][难程度][1][关键词][][][0.2][下二重积分的][][二重积分的][答案及评分准]1x2x2y 51 04 3[][][0.2][下二重积分的二重积分的][内容]D
x 1y2
, D0
x1
y1.[答案及评分准]2x1 1 y 40 11y222arctan1 7 10[][][0.2][下二重积分的二重积分的][内容]D
,
D:0
x,0
y .2[答案及评分准]2sinxsy 520 02 [][][0.2][下二重积分的二重积分的][内容]分,中D:1
x3,0
y2.y1D[答案及评分准]式3x2x2 1 y 51 01y28ln3 103[][][0.2][下二重积分的二重积分的][内容]
,D0x1,0
y4.D[答案及评分准]式13x4y 50 03 10[][][0.2][下二重积分的二重积分的][内容]xsinD
D:1
x2,0y2.[答案及评分准]2原式2dx21 0
53 102[][][0.3][下二重积分的二重积分的][内容](x
d
,
D,|y1.D[答案及评分准]原式0
x1
y1
yx 510[][][0.3][下二重积分的二重积分的][内容]x(x,
D3,|y1.D[答案及评分准]原式3
x2x1
y3
x1
510[][][0.2][下二重积分的二重积分的][内容](x3
,
D1,0y1.D[答案及评分准]
3x1y
x1y2y1 023
1 0[][][0.2][][][][],DO(0,0),D。[答案及评准]1x1y 40 x11)x 701 6[][][0.2][][][][],
D:0x1
y0.D[答案及评准]1x
40 111x)x 701 e[][][0.2][][][][](xy2
D:0
yx,0x.D[答案及评准]xnx(xy2)y 40 0(xinx1in3)dx 70 34 109[][][0.3][][][][],D由曲线y,线y0, x2,所围成D。[答案及评准]2x0 0
412dx 72 016 103[][][0.3][][][][]
,Dyx,
y2x
x4。D[答案及评准]原式4x2x
xydy 4043x2
xxdx 702384 107[][][0.3][][][][],
D:xy
x2.D[答案及评准]原式2x
3x41 x2x3dx 7133 4[][][0.3][][][][]xD是线x0,y和y
x。原式x(x
Dy)dy 30 x(x)n2)x 702 [][][0.3][][][][](x2y2,D是线yx,
yx1,
y1,Dy3。[答案及评准]原式3y
(x2y2y)dx 41 y13[11 3
y3(y1)3)
y2
y]dy3[2y22y1]dy 71 310 10[][][0.3][][][][]xcos(2,D
D:0x4
,1
y1.[]4x4
xcos240 14sin27401 102[][][0.2][][][][]ex,
D:1x1
y1.D[]11
exx111
eydy 5(e )2 e[][][0.2][][][][](2,
D:|x,0
y1.D[]2x1y 5 00[][][0.2][][][][](x,Dyxx0,y1D[]1yx(x0 0
y)dx 411(x02
y)2|ydy01(2y21
y2)dy 70 21y312 01 102[][][0.2][][][][](x6,Dyx,
y5xx1D。[答案评准]1x5x(x6)y 40 x16x2x 70251 103[][][0.3][][][][],D
y1
yxx2D。[答案评准]2xxy
x4121
1xx(x2
1)dx 712 x2151ln2 8 2[][][0.2][][][][]D
ydxdy,Dyx
xx2x4。[答案评准]41dx2xdy 42x x437229 [][][0.3][][][]yy,Dxy1.D[答案评准]41xxy 40 0211x2)x 702 3[][][0.3][]yd,Dxy1.D[]41xxy 40 0211)2x 701 6[][][0.3][][][][],D:1x1x
yx.D[]2xxy2y 41 1x12(x41)dx 731 x219 1010[][][0.3][][][][]D
1(x
,D:3x
y2.[]4x3 1
(x
dy 3y)243
1 x1
1x
)dx 7ln25 1024[][][0.3][][][][](x2y2,Dy
x, y
xa, ya及y
D(a0[]3ayya ya
(x2
y2)dx 43a(2ay2a2y1a3)dy 7a 314a4 [][][0.3][][][]3x3x(2x0 0
y)dy.[]3(93x3x2)dx 50 2 227 102[][][0.3][][][][]D
1(xy
,D0
x1,0
y1.[]1x1 1 y 40 0xy)210
1 1x
12
)dx 7ln4 3[][][0.3][][][][]
,D:x y
2x,0
x1.D[]1x
2x
40 x11(2x2x2)dx 7021 106[][][0.3][][][][],Dyx, 1,x3D[]3xxy 41 1331(x31)dx 712 3101ln3 2[][][0.3][][][][](x2y2,Dy2,yx,
y2xD。[答案及评准]2yy(x2
y2x)dx 402(19
y323y3
y2)dy 70136
24 810[][][0.3][][][]y[](x,D曲线x1 y
y1xy1D。[答案及评准]1y0
y(x1)dx 41102
y(yy2)dy 7 1 1024[][][0.3][][][][]D
11x4
,Dyx
y0
x1。[答案及评准]1 1
dxxdy 301x4 01 1 dxxdy 601x4 011x22 01x4 108[][][0.3][][][]4y2[],4y2
x0。D4y4y2
y2dy
42 02y2(4y2)dy 7064 1015],DD
y x2121
yx
4。]42
xx4y 41x21214218
(x2
4x x3)dx 7210]yy,Dyx,y0,x1。D]1exxxeyy 40 01ex(ex)x 70e2e1 2 2]D
,D曲1,y与x2y2。]解得交点(2,12
(2,4)原式2x2x21y 41 1 y2x2x2(x1234
1)dx 7x210[][][0.3][][][][](x2y2,D:1x2,0y1.D[]2x1(x21 02(x21)dx
y2)dy 471 322 103[][][0.3][][][]2[]4y2,Dx0,y ,y2
xD。[]24ydyyyxy)dx 420 024y)dy 72202 [][][0.3][][][][](xy2, D
D:0
y
x,0
x .2[]2dxx(x20 0
y2)dy 42(x13x)dx 720 37 109[][][0.3][][][]x[]x ,D抛物线y yxD。[](0,0)10
yxdx 4y2y11(y y4 y)y 7y2 06 1055[][][0.4][下二重积的二重积的][内容]xdxdy,D2xD
y1
1x2,0x1.[]1xx0 21x(x0
x241x21)dx 71 6[][][0.3][极下二重积的二重积的][内容]r2drdD
,其中
D:a
ra,0
(a0)2 .[]2da2
r2dr 40 a21a3)d723a2
0(2) 3 2 3[][][0.3][极下二重积的][][二重积的][内容]利用极二重积x2y2
, 其中D:x2y
D1x0,y0.[]2d11r2)rdr 520 0 1r2)n1r2)(r21 84 0(2n2 4[][][0.3][下二次积分的二次积分的]二次积分
4x
x2y2[答案及评分准]d2r20 0
2 05r[ ]2 r3 08 3[][][0.3][下二次积分的二次积分的]a2y2二次积分a2y20 0
(x2y2
(a0).[答案及评分准]2dar30 02 a48[][][0.3][下二重积分的二重积分的]2d2er20 0(e4
x2y2
ex2y2dxdy .510[][][0.3][直角下二重积分的二重积分的][内容]
, Dx2y
2,x
y2.D[答案及评分准]11
dy2y2y2
xdx 41(2y2y4)y 7022 1015[][][0.3][][][][]e2ddy,Dyxy3D。[答案及评准]1e2xxy 401(e0
x3x3ex2)dx 71 e1 12[][][0.3][][][][],D(x2)2y21上半圆x轴D。[答案及评准]4xx234xx231 0
413x(4xx23)dx 7214 3[][][0.3][][][][],
D:x2
R2.D[答案及评准]RR
y2dyR2R2y2R2y2
x3dx 4R2R2y2R2y2
x3dx被函数为奇函数 7故为. [][][0.3][][][]xy,D:2y2
a2,
y0.D[答案及评准]2ax0
a2x242ax a2x2702a3 103[][][0.3][][][][]|x,D:D
a2 b2
1.[]D一象限部D上4倍在一象限1|xx,b4bdyb0 0
b2y2
42ba2
(b2y2)dy 70b24 a2b 103[][][0.4][][][][]x||y,
D:x2y2
1.D[]1e2xxy 501(e0
x3x3ex2)dx 81 e1 12[][][0.3][][][]x||y, Dx||y1.D[]41xx(x0 0541(11x2)x 80 2 24 103[][][0.4][][][][]
,D为y1,
y2xx0所围成区x1yxD。[试题答案及评分标准]yyxyyx2 1 yyxdx5011yy101y11
yx2 y y
82 8 012
0 11
y19321 8 2[试题编号][计算题][较易0.4][直角坐标系下二重积分的计算][][二重积分的计算][试题内容]计算二重积分
x2y2D是以O(0,0)
为顶点D的三角形区。[试题答案及评分标准]1xx
x2y250 xy2x2yy2x2y2
x y
x dx01026
x2dx
arcsin )|2 x x810[试题编号][计算题][较易0.3][直角坐标系下二重积分的计算][][二重积分的计算]sinx[试题内容]分
,Dyx
y0
x1所围成的区。xD[试题答案及评分标准]1
xdxxdy 40 x 01nx 701cos1 10[试题编号][计算题][较易0.3][直角坐标系下二重积分的计算][][二重积分的计算][试题内容]计算二重积分
sinx中 x
y所围成的区。D[试题答案及评分标准]1sinxdxx2dy 40 x 01xnx 7010[][][0.3][下二重积分的二重积分的][内容]x2y2,
D:x2y2
4
x0
y0.D[答案及评分准]2d2r2)rdr 420 0574 1(5ln54) 104[][][0.3][下二重积分的二重积分的][内容](x2y2
D:x2
2x,
x2y2
4x.D[答案及评分准]222
d4cosr3dr 42cos2260cos4d72045 102[][][0.4][下二重积分的二重积分的][内容]
x2
y2, D
2x.D[答案及评分准]rdD222
d2cosr250282
d3 2216d823 0623 332 109[][][0.3][下二重积分的二重积分的][内容]利用
x2
y2dxdy
Dx2y
4.D[答案及评分准]2d2r2 60 016 103[][][0.3][下二重积分的二重积分的][内容]利用
x2
y2dxdy,Dx2y
1.D[答案及评分准]r22d1r20 0
65 6[][][0.3][下二重积分的二重积分的][内容]
1x2y2dxdy
,Dx2y
1,
x0
y0.D[答案及评分准]1r2rdrdD1r221r220 0
5 1 2 3 [ 2 2 36
r2)280[][][0.3][下二重积分的二重积分的][内容]利用
ydxdy
, Dx2y
a2,
x0
y0D(a0).[答案及评分准]rrdrdD2dar2dr 520 01a3 83a33[][][0.3][下二重积分的二重积分的]2[内容]利用二重积分(x2y2)3dxdy2
,Dx2y
R2,
x0,Dy0,(R.[答案及评分准]r3rdrd5D2dRr4dr 820 0R52 5R5 1010[][][0.3][下二重积分的二重积分的]内容利用二重积分
x2
y2
, 其中
D:a2
x2y
b2,D(ba0).[答案及评分准]r3D2dbr2 50
a1(b3a3)3 (b3a3) 3[][][0.4][下二重积分的二重积分的][内容](4x2y2,
D:x2y
4.D[答案及评分准]4 x2y24
dxdy
x2y24
(x2
y2)dxdy 22r3 50 016 8410[][][0.3][下二重积分的二重积分的][内容]xydxdy
,其中
D:x2y
1,
x2y
2x
y0.D[答案及评分准]3d2ar3cosdr 530 13(4cos51)d730 49 1016[][][0.4][下二重积分的二重积分的][内容]利用xdxdy,D:x2y2
2x,x2y
x.D[答案及评分准]rrdrdD222
d2cosr25cos212
(8cos3)d32214d823 07 8[][][0.4][下二重积分的二重积分的]
x2y2
,
D:x2y
R2
(R0),Dx0,y0.[答案及评分准]r2D2dR1r2)rdr 520 01r2)ln(1r2)r2]R 82 2 0 R2)ln(1R2)R2] 104[][][0.4][下二重积分的二重积分的][内容]利用二重积分sin x2y2dxdy,中D:1x2y
4
x0,Dy0.[答案及评分准]sinrrdrdD2d2rsinrdr 520 1([rcosr]22cos82 1 1(cos12cos2sin2sin1) 2[][][0.3][下二重积分的二重积分的]
(63x2y
, 其中
D:x2y
R2,D(R0).[答案及评分准]2dR6rs2rsn) 50 03R2R(6r2rsin)rdr 706R2[][][0.4][下二重积分的二重积分的][内容]利用二重积分2x3y
,Dx2y
a2,
x0,Dy0, (a0).[答案及评分准]2rcossin)rdrdDrdrdr2(2cos3sin)drDD D2a2(2cos3sin)ar224 0 0a3a2(2a34 3(5a)a24 3[][][0.3][下二次积分的二次积分的]二次积分3x2
y2dy.1[答案及评分准]
x12ny2yyx 40 12ysiny2701cos4) 102[][][0.3][下二次积分的二次积分的]二次积分1xxx0 0
1x2y2.[答案及评分准]1y1
1x2y240 y11(y3)dy 7301 104[][][0.3][下二次积分的][][二次积分的]二次积分1x2x1ey2y.0 x[答案及评分准]1ey2yyx2x 40 011y3ey2y 73011 106 [][][0.3][下二次积分的二次积分的]1y3二次积分11y3
xy 0 x2[]1y31y3
y dy
5y0 0y1y311 y2 y1y32 021(23
[][][0.3][下二次积的二次积的]1x1x
y3dy.0 x[]1yyx0 0
y3dx 510
y3121
y2dy 816[][][0.3][下二次积的][二次积的]1y1n2x.0 y[]1xxnx2y 50 01xnx2x 8012[][][0.3][下二次积的二次积的][内容]
y
sinxdx.2 20 y 2 2[]22
xdxxdy 5001
x 028210[][][0.4][][][][]D
,Dy1x
y2
x1x2。[答案及评准]1y2eyx2y2eyx 51 1 1 12 y1(e2ye)y2(e2yey)y 81 12e2(e22
[][][0.4][][][][]|y2x,
D:0x1,0
y2.D[答案及评准]1x2x(2x)x1x20 0 0 21(424x)x0
(y2x)dy 584 3[][][0.4][][][][]|yx,
D:0x1,0
y1.D[答案及评准]1xx(x)x1yy(y)x 50 0 0 021xx(x)y 80 01 3[][][0.4][极][][]1x2y2[]D
1x2y2
, D:
1.[答案及评准]2d11r20 01r11udu01u
58(2ln2[][][0.4][下二重积分的二重积分的][内容](x2
y2
a2x2y2dx
,Dx2y
a2,Da0.[答案及评分准]2dar0 0
a2r25令rat2a53tsin5t)dt 8204a5 1015[][][中等0.5][下二次积分的][][二次积分的]4x2二次积分14x20 1x2
ex2y2
2x44x2
ex2y2dy.[答案及评分准]2d2er2 520 1 (e4e) 4[][][中等0.5][下二次积分的][][二次积分的]R[内容]积分R
2x(x2y2
(x2y2)dy
(R0).R2R2x2R2[答案及评分准R24dRr3 640 0 R4 1016[][][中等0.5][下二次积分的][][二次积分的][内容]
R2ey2yex2
ey2
R2x2ex2
(R0).0 0 R 02[答案及评分准]2dRer2 62 04eR2) 8[][][中等0.5][下二重积分的][][二重积分的][]D
1x2y1x2y
dxdy
D:x2y
a2(0
a.[]1r42darr31r40 01r41r4
a r3
] 70 01r4[arcsinr2]1r40
[a 1r42 1a4a21a4[][][0.5][下的][][的]a2x2aa2x2
1 , (a0)4a24a2x2y2
0 x04
d2asin0
r 54a2r24a2r24
4a2r
asind702a04
cos)da(2
2 2) 10[][][0.5][下的][][的][](4x
,
D:x2y
2y.D[]设xr, yrsind2sin(4rsrn) 50 08n21n3s1n4)d 80 3 310[][][0.5][下次的次的]2xxnxy4nxy.1 x 2y 2 2y[]2dyy2sinxdx 41 y 2y22y(cosy)dy 71 2 42) 2 [][][0.6][][][]1 x
y2[][]
dx 0 0
2dy.0
y1y2
y22dx 410
22y2)dy
y2
1
y2e 2dy ye 2dy 70 0ee
y2
1
y2 )2dy 2e22dy 2e2dy2e1 102[][][0.7][][,][]
lim
x2y2.[]
t0t2x2y21m1(r2) 50 0 m1n0 2(unuu)1 80 t2[][][0.5][][][][],D(x1)2y21(y1)2
1D[]xryrsin4 2sinr2sr2cosr2s 54 0 0 0488sns s83 44 2 703 34 1 4 2[][][0.5][下二重积的二重积的][内容](x
y
, Dx2y2xy.D[]sin)D43sin)dsinr254 0441sin)4d4344 3 3 4
sin4
)d844sin4tdt3 028sin4tdt230 102[][][0.5][下二重积的二重积的]D
1x2y
, Dx2y24
x2y
16,x2y24x.[]3(430 4cos
r4r) 5 232cos)d223 70 334 1033[][][0.5][下二重积分的二重积分的][内容]
x2y2dxdy
,Dx2y
4
x2y
2x.D[答案及评分准]22420 2cos
r2r22r2 5 022220
8 (1cos3 )d 7 3 33 9[][][0.6][下二重积分的二重积分的][内容][答案及评分准]
x2y2
|x2y24.当4x2y
9时
|x2y24x2y24,x2y
4时
|x2y244x2y2.原式
4x2y2
(x2y2
x2y2
(4x2y2523(r2)r22r(4r2) 80 2 0 02(81294884)441 102[][][0.8][][][,]] ft)Fu) x2y2z2(2u)2
ef
x2y2z2,F(u。[答案及评标准]14x2Fu)x y2ur2nef(r)14x20 0 02r2ef(r)60F(u)32u2ef(2u) [][][0.7][][ ][][]
,z3x2
y2z1x2y0部分立体。[答案及评标准]2V2
dx
yx2
414x21 0 3x214x2214x2214x22
y(14x2y2)dy1 0222
4x2)28114122 1015[][][0.65][][ ]xy[]xy
x2
,其中是由曲面z ,x
y10z0所围界闭区域。[答案及评标准]xyV1xxy x2z 4xy0 0 01xx1x3 60 0 211x3104dx 8 1 10240[][][0.65][][ ][]
yx,y
x, y0
z0
xz2。[答案及评标准]Vxxyxy(xz)z2 2 40 0 02dx20 0
x)dy 6220
xx)dx 821 1016 2[][][0.7][][ ][][]z0,(a0).
xy为:x
yza,x0,y0,[答案及评标准]Vaxaxyaxy(xy)z 40 0 0axax(xy)sa 60 0aax(ax)cos80aacosa1a22
cosa [][][0.7][][ ][]]1z1x1
y2dy.0 0 x[答案及评标准]I1yyx10 0 0
y2dz 51y0
y2812[][][0.6][][ ][][]
(x
dvy
,:1
x2,1
y2,1
z2.[]I2x2y1 1 112x2[
(x1
1yz)3dz 1
2521
(xy1)2
(x
y2)212[ 1
2
1 821 x
x
x27235 2 2[][][0.6][][ ][][]1
x3y2
x1
x2,
y0
yx2,z0,z x[]xI2xx2y1x3y2z 4x1 0 02xx2y2 61 012x2 861255 1048[][][0.65][][ ][]
z
xy
xy1,
z0所。[]I1xxyyz 40 0 021x2(1x)3dx 713 1 10180[ ]。
xzy2
dvx0,
z0,
z1
y2x
y答案评标准]I1y
yxy2
dz 40 0 0
y2)1y
yx1
y2)260 011y1
2(1y2)2dx 84 01 1048[ ]设是x1,y。答案评标准]
xy2xz0z
5x2
y2有界闭区域。5x2y2I1x5x2y2
40 x 01x2
x(5
x2
y2)dx 60 x 21(5x25x4)dx 80 2 31 102[ ][],yz,
z0
yx0x
。[答案及评标准]Ixnxyyz 40 0 0xnx 60 008
1x2
810[编号][][难0.65][三重积][ 三重积][]2
,x2
1,
y0
y1位z0立体。[答案及评标准]1x221x1y 21x20 0 021x1y1x2) 60 011x2) 802 3[编号][][难0.7][三重积][ ][三重积][]7xy2z3dv,yx,
x1, z
xyzx2y有界闭。[答案及评标准]1xxy
7xy2z3dz 40 0 x2y1xx7x51x4)y6 60 0411xx21x4) 84 0 0 1 10221[][][0.6][][ ][]]ex2y2dv,0[答案及评标准]1x1yy3ex2y2z0 0 01x1ex2y3ey20 0
x1,0
y10zxy3。35e1 4[][][0.6][次][ ][次]xxyy()3z.0 0 0[答案及评标准]zy()3 50 z y()3zy)0 z1z)2()3z 72 01cos3) 106[][][0.6][次][ ][次]1x1y1
1z4.0 x y[答案及评标准]1zzyy0 0 0
1z451zzy0 0
1z4dy1103
1z4dz 721(2218
10[][][0.6][][ ][][]
1dv.x1x2z0xx2y2
yy
z。[答案评分标准]2xxy1 0 0
1x2y2dz 42xx y 61 0x2y2821n(x2y2)x812021ln2dx 91212 2[编号][][难0.65][三重积分的][ 三重积分的][] 是x
yz
算
1.(xyz1)3.[答案评分标准]1xxyxy 1 z 30 0
(1x
yz)31xx1 1
15 0 0 2xy)2 411 1 x3 82 1x 4 0 125) 2 8[编号][][难0.65][三重积分的][ 三重积分的][]
,是0
x1,0
y1,0z
x
y确定的立体。[答案评分标准]1y1xx1y)z 20 0 01y1[x1y0 01[1yy1y 6021 102sin2xy2[][][0.65][sin2xy2[0x,。[答案及评标准]
yx,
0z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化工产品检测代理合同模板
- 企业专用劳动合同聘用合同书
- 科技园区企业租赁合同模板
- 养老院建设项目招投标文件
- 林业开发铣刨机租赁合同
- 国有企业知识管理策略
- 环保项目内部招投标管理规定
- 木结构工程混凝土施工承包合同
- 水果公司宿舍电费管理准则
- 商业大厦铁艺施工合同
- 附录-瓦斯抽采指标计算方法
- 廉洁提醒谈话记录表 (空表)
- 一年10亿销售,细数故宫背后的营销手段
- 《急性胰腺炎诊治指南》解读急性胰腺炎外科诊治现状与进展
- 二年级上册语文全册教材分析
- 游戏综合YY频道设计模板
- 部编版《古诗三首》饮湖上初晴后雨(完美版)课件
- 《中国居民膳食指南》2023收藏版
- 【深信服】大云云计算PT2认证考试(重点)复习题库(含答案)
- 管壳式热交换器的热力计算课件
- 蛇咬伤的护理查房-课件
评论
0/150
提交评论