版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是()A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B.从2014年到2018年这5年,高铁运营里程与年价正相关C.2018年高铁运营里程比2014年高铁运营里程增长80%以上D.从2014年到2018年这5年,高铁运营里程数依次成等差数列2.若角的终边经过点,则()A. B. C. D.3.在底面为正方形的四棱锥中,平面,,则异面直线与所成的角是()A. B. C. D.4.已知随机变量服从二项分布,则().A. B. C. D.5.已知则复数A. B. C. D.6.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件7.不等式的解集是()A. B.C. D.或8.若是关于x的实系数方程的一个虚数根,则()A., B., C., D.,9.2019年5月31日晚,大连市某重点高中举行一年一度的毕业季灯光表演.学生会共安排6名高一学生到学校会议室遮挡4个窗户,要求两端两个窗户各安排1名学生,中间两个窗户各安排两名学生,不同的安排方案共有()A.720 B.360 C.270 D.18010.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响.对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.有下列5个曲线类型:①;②;③;④;⑤,则较适宜作为年销售量关于年宣传费的回归方程的是()A.①② B.②③ C.②④ D.③⑤11.现有张不同的卡片,其中红色、黄色、蓝色、绿色卡片各张.从中任取张,要求这张卡片不能是同一种颜色,且红色卡片至多张.不同取法的种数为A. B. C. D.12.我国古代数学名著九章算术中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,,,当堑堵的外接球的体积为时,则阳马体积的最大值为A.2 B.4 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.化简______.14.某技术学院为了让本校学生毕业时能有更好的就业基础,增设了平面设计、工程造价和心理咨询三门课程.现在有6名学生需从这三门课程中选择一门进修,且每门课程都有人选,则不同的选择方法共有______种(用数学作答).15.正项等差数列的前n项和为,已知,且,则__________.16.已知曲线的方程为,集合,若对于任意的,都存在,使得成立,则称曲线为曲线.下列方程所表示的曲线中,是曲线的有__________(写出所有曲线的序号)①;②;③;④三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)若不等式有实数解,求实数a的取值范围.18.(12分)已知四边形是矩形,平面,,点在线段上(不为端点),且满足,其中.(1)若,求直线与平面所成的角的大小;(2)是否存在,使是的公垂线,即同时垂直?说明理由.19.(12分)深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:球队胜球队负总计甲参加22b30甲未参加c12d总计30en(1)求b,c,d,e,n的值,据此能否有97.7%的把握认为球队胜利与甲球员参赛有关;(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.2,0.5,0.2,0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.4,0.2,0.6,0.2.则:当他参加比赛时,求球队某场比赛输球的概率;当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;附表及公式:0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828.20.(12分)已知函数,为的导函数.证明:(1)在区间存在唯一极小值点;(2)有且仅有个零点.21.(12分)已知集合.(1)若,求实数的值;(2)若,求实数的取值范围.22.(10分)已知函数(1)若在区间上是单调递增函数,求实数的取值范围;(2)若在处有极值10,求的值;(3)若对任意的,有恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由折线图逐项分析即可求解【详解】选项,显然正确;对于,,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题2、A【解析】
用余弦的定义可以直接求解.【详解】点到原点的距离为,所以,故本题选A.【点睛】本题考查了余弦的定义,考查了数学运算能力.3、B【解析】
底面ABCD为正方形,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以就是异面直线PB与AC所成的角.【详解】解:由题意:底面ABCD为正方形,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,
.
∴PBCM是平行四边形,
∴PB∥CM,
所以∠ACM就是异面直线PB与AC所成的角.
设PA=AB=,在三角形ACM中,
∴三角形ACM是等边三角形.
所以∠ACM等于60°,即异面直线PB与AC所成的角为60°.
故选:B.【点睛】本题考查了两条异面直线所成的角的证明及求法.属于基础题.4、D【解析】表示做了次独立实验,每次试验成功概率为,则.选.5、A【解析】分析:利用复数的乘法法则化简复数,再利用共轭复数的定义求解即.详解:因为,所以,,故选A.点睛:本题主要考查的是复数的乘法、共轭复数的定义,属于中档题.解答复数运算问题时一定要注意和以及运算的准确性,否则很容易出现错误.6、A【解析】
由,可推出,可以判断出中至少有一个大于1.由可以推出,与1的关系不确定,这样就可以选出正确答案.【详解】因为,所以,,,显然中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符.由,可得,与1的关系不确定,显然由“”可以推出,但是由推不出,当然可以举特例:如,符合,但是不符合,因此“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分不必要条件的判断,由,,,判断出中至少有一个大于1,是解题的关键.7、C【解析】
问题化为﹣1<x+3<1,求出它的解集即可.【详解】不等式可化为﹣1<x+3<1,得﹣4<x<﹣2,∴该不等式的解集为{x|﹣4<x<﹣2}.故选:C.【点睛】本题考查了绝对值不等式的解法与应用问题,是基础题目.8、D【解析】
利用实系数一元二次的虚根成对原理、根与系数的关系即可得出.【详解】解:∵1i是关于x的实系数方程x2+bx+c=0的一个复数根,∴1i是关于x的实系数方程x2+bx+c=0的一个复数根,∴,解得b=﹣2,c=1.故选:D.【点睛】本题考查了实系数一元二次的虚根成对原理、根与系数的关系,属于基础题.9、D【解析】
由题意分两步进行,第一步为在6名学生中任选2名安排在两端两个窗户,可得方案数量,第二步为将剩余的6名学生平均分成2组,全排列后安排到剩下的2个窗户,两者方案数相乘可得答案.【详解】解:根据题意,分两步进行:①在6名学生中任选2名安排在两端两个窗户,有中情况;②将剩余的6名学生平均分成2组,全排列后安排到剩下的2个窗户,有种情况,则一共有种不同的安排方案,故选:D.【点睛】本题主要考查排列、组合及简单的计数问题,相对不难,注意运算准确.10、B【解析】分析:先根据散点图确定函数趋势,再结合五个选择项函数图像,进行判断选择.详解:从散点图知,样本点分布在开口向右的抛物线(上支)附近或对数曲线(上部分)的附近,所以y=或y=p+qlnx较适宜,故选B.点睛:本题考查散点图以及函数图像,考查识别能力.11、C【解析】试题分析:3张卡片不能是同一种颜色,有两种情形:三种颜色或者两种颜色,如果是三种颜色,取法数为,如果是两种颜色,取法数为,所以取法总数为,故选C.考点:分类加法原理与分步乘法原理.【名师点晴】(1)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步.12、D【解析】
由已知求出三棱柱外接球的半径,得到,进一步求得AB,再由棱锥体积公式结合基本不等式求最值.【详解】解:堑堵的外接球的体积为,其外接球的半径,即,又,.则..即阳马体积的最大值为.故选:D.【点睛】本题考查多面体的体积、均值定理等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用模的性质、复数的乘方运算法则、模的计算公式直接求解即可.【详解】.故答案为:【点睛】本题考查了复数模的性质及计算公式,考查了复数的乘方运算,考查了数学运算能力.14、540【解析】
根据题意可知有3种不同的分组方法,依次求出每种的个数再相加即得.【详解】由题可知6名学生不同的分组方法有三类:①4,1,1;②3,2,1;③2,2,2.所以不同的选择方法共有种.【点睛】本题考查计数原理,章节知识点涵盖全面.15、2【解析】
由等差数列的通项公式求出公差,再利用等差数列前项和的公式,即可求出的值【详解】在等差数列中,所以,解得或(舍去).设的公差为,故,即.因为,所以,故,或(舍去).【点睛】本题考查等差数列通项公式与前项和的公式,属于基础题。16、①③【解析】
将问题转化为:对于曲线上任意一点,在曲线上存在着点使得,据此逐项判断曲线是否为曲线.【详解】①的图象既关于轴对称,也关于轴对称,且图象是封闭图形,所以对于任意的点,存在着点使得,所以①满足;②的图象是双曲线,且双曲线的渐近线斜率为,所以渐近线将平面分为四个夹角为的区域,当在双曲线同一支上,此时,当不在双曲线同一支上,此时,所以,不满足,故②不满足;③的图象是焦点在轴上的抛物线,且关于轴对称,连接,再过点作的垂线,则垂线一定与抛物线交于点,所以,所以,所以③满足;④取,若,则有,显然不成立,所以此时不成立,所以④不满足.故答案为:①③.【点睛】本题考查曲线与方程的新定义问题,难度较难.(1)对于新定义的问题,首先要找到问题的本质:也就是本题所考查的主要知识点,然后再解决问题;(2)对于常见的,一定要能将其与向量的数量积为零即垂直关系联系在一起.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)将绝对值不等式两边平方可得不等式的解集为(2)将原问题转化为,结合绝对值不等式的性质可得实数a的取值范围是.试题解析:(1)依题意得,两边平方整理得解得或,故原不等式的解集为(2)依题意,存在使得不等式成立,∴∵,∴,∴18、(1);(2)不存在满足条件,理由见详解.【解析】
(1)建立空间直角坐标系,根据直线的方向向量与平面法向量的夹角余弦值得到线面角的正弦值,从而计算出线面角的大小;(2)假设存在满足,根据表示出的坐标,即可求解出的坐标表示,根据、求解出的值.【详解】(1)建立空间直角坐标系如图所示:当时,为中点,因为,所以,所以,取平面一个法向量,设直线与平面所成的角的大小为,所以,所以,所以,所以直线与平面所成的角的大小为;(2)设存在满足条件,因为,所以,所以,又因为,当是的公垂线时,所以,所以无解即假设不成立,所以不存在满足条件.【点睛】本题考查利用空间向量求解线面角、公垂线问题,难度一般.(1)利用直线的方向向量以及平面的法向量求解线面角时,要注意求出的直线方向向量与平面法向量夹角余弦的绝对值即为线面角的正弦;(2)公垂线的存在性问题可先假设成立,然后根据垂直关系得到向量的数量积为零,由此判断存在性是否成立.19、(1)有的把握认为球队胜利与甲球员参赛有关.(2)见解析.【解析】分析:(1)根据表中的数据,求得的值,进而求得的值,利用附表即可作出结论;(2)设表示“乙球员担当前锋”;表示“乙球员担当中锋”;表示“乙球员担当后卫”;表示“乙球员担当守门员”;表示“球队输掉某场比赛”,利用互斥事件和独立事件的概率公式,及条件概率的公式,即可求解相应的概率.详解:(1),有的把握认为球队胜利与甲球员参赛有关.(2)设表示“乙球员担当前锋”;表示“乙球员担当中锋”;表示“乙球员担当后卫”;表示“乙球员担当守门员”;表示“球队输掉某场比赛”,则..点睛:本题主要考查了独立性检验和条件概率的计算问题,关键在于从题设中分析出相应的数据,以及相应事件的概率,结合条件概率的计算公式进行计算,着重考查了分析问题和解答问题的能力,以及推理与计算能力,属于中档试题.20、(1)证明见解析;(2)证明见解析【解析】
(1)令,然后得到,得到的单调性和极值,从而证明在区间存在唯一极小值点;(2)根据的正负,得到的单调性,结合,,的值,得到的图像,从而得到的单调性,结合和的值,从而判断出有且仅有个零点.【详解】(1)令,,当时,恒成立,当时,.∴在递增,,.故存在使得,时,时,.综上,在区间存在唯一极小值点.(2)由(1)可得时,,单调递减,时,,单调递增.且,.故的大致图象如下:当时,,∴此时,单调递增,而.故存在,使得故在上,的图象如下:综上,时,,时,,时,.∴在递增,在递减,在递增,而,,又当时,,恒成立.故在上的图象如下:∴有且仅有个零点.【点睛】本题考查利用导数研究函数的单调性和极值,利用导数研究函数零点个数,属于中档题.21、(1)(2)或【解析】
(1)先化简集合,,根据求解.(2)由(1)得到或,再利用子集的定义由求解.【详解】(1)因为集合,,又因为,所以,所以.(2)或,因为,所以或,解得或.【点睛】本题主要考查集合的基本关系及其运算,还考查了运算求解的能力,属于中档题.22、(1)m≥-(1)(3)m∈[-1,1]【解析】分析:(1)由在区间上是单调递增函数得,当时,恒成立,由此可求实数的取值范围;(1),由题或,判断当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国可吸收聚合物行业市场发展趋势与前景展望战略分析报告
- 2024-2030年中国发芽米市场供需调查分析及投资潜力研究报告
- 2024-2030年中国双向拉伸聚酯薄膜行业需求量预测及投资战略分析报告
- 2024年广告发布合同:品牌宣传广告投放协议
- 2024-2030年中国十二烷基硫酸钠行业市场发展规模及投资可行性分析报告
- 2024-2030年中国动物胶制造行业生产状况分析及投资风险研究报告
- 2024-2030年中国冷阴极萤光灯管行业发展前景投资策略分析报告
- 2024-2030年中国农村垃圾处理行业现状分析及投资规划研究报告
- 2023-2024高三政治教师工作计划
- 12岁小朋友发言稿
- 副神经节瘤图文.ppt
- 业务流程绘制方法IDEF和IDEFPPT课件
- (完整版)垃圾自动分拣机构PLC控制毕业设计.doc
- 小学四年级音乐课程标准
- 我的一次教研经历
- 双向细目表和单元测试卷及组卷说明
- 工业厂房中英文对照施工组织设计(土建、水电安装)范本
- PCR仪使用手册
- 离子色谱法测定空气中二氧化硫
- 水蒸汽热力性质表
- 办公设备购销合同(1)——合同协议范本模版
评论
0/150
提交评论