辽宁省庄河高级中学2022-2023学年数学高二下期末学业质量监测模拟试题含解析_第1页
辽宁省庄河高级中学2022-2023学年数学高二下期末学业质量监测模拟试题含解析_第2页
辽宁省庄河高级中学2022-2023学年数学高二下期末学业质量监测模拟试题含解析_第3页
辽宁省庄河高级中学2022-2023学年数学高二下期末学业质量监测模拟试题含解析_第4页
辽宁省庄河高级中学2022-2023学年数学高二下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为A.5 B.2 C.3 D.22.若直线l:过点,当取最小值时直线l的斜率为()A.2 B. C. D.23.已知分别为内角的对边,且成等比数列,且,则=()A. B. C. D.4.在的展开式中,含项的系数为()A.10 B.15 C.20 D.255.某中学元旦晚会共由6个节目组成,演出顺序有如下要求:节目甲必须排在乙的前面,丙不能排在最后一位,该晚会节目演出顺序的编排方案共有()A.720种 B.600种 C.360种 D.300种6.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件为“抓取的球中存在两个球同色”,事件为“抓取的球中有红色但不全是红色”,则在事件发生的条件下,事件发生的概率()A. B. C. D.7.设定义在上的函数的导函数为,若,,则不等式(其中为自然对数的底数)的解集为()A. B.C. D.8.某班4名同学参加数学测试,每人通过测试的概率均为,且彼此相互独立,若X为4名同学通过测试的人数,则D(X)的值为()A.1 B.2 C.3 D.49.若a>b>c,ac<0,则下列不等式一定成立的是A.ab>0 B.bc<0 C.ab>ac D.b(a-c)>010.已知抛物线的焦点为F,点是抛物线C上一点,以点M为圆心的圆与直线交于E,G两点,若,则抛物线C的方程是()A. B.C. D.11.已知定义在R上的增函数f(x),满足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定大于0 B.一定小于0C.等于0 D.正负都有可能12.三位女歌手与三位男歌手站成一排合影,要求每位女歌手互不相邻,则不同的排法数为A.48 B.72 C.120 D.144二、填空题:本题共4小题,每小题5分,共20分。13.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的左视图如图所示,则该三棱锥的体积是________;14.己知函数,则不等式的解集是_______.15.6月12日,上海市发布了《上海市生活垃圾分类投放指南》,将人们生活中产生的大部分垃圾分为七大类.某幢楼前有四个垃圾桶,分别标有“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”,小明同学要将鸡骨头(湿垃圾)、贝壳(干垃圾)、指甲油(有害垃圾)、报纸(可回收物)全部投入到这四个桶中,若每种垃圾投放到每个桶中都是等可能的,那么随机事件“4种垃圾中至少有2种投入正确的桶中”的概率是______.16.若曲线与直线满足:①与在某点处相切;②曲线在附近位于直线的异侧,则称曲线与直线“切过”.下列曲线和直线中,“切过”的有________.(填写相应的编号)①与②与③与④与⑤与三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数有两个不同的零点,求实数的取值范围;(2)若在上恒成立,求实数的取值范围.18.(12分)设数列的前项和为,且满足.(1)若为等比数列,求的值及数列的通项公式;(2)在(1)的条件下,设,求数列的前项和.19.(12分)已知函数().(Ⅰ)若曲线在点处的切线平行于轴,求实数的值;(Ⅱ)当时,证明:.20.(12分)已知函数.(I)求的减区间;(II)当时,求的值域.21.(12分)小威初三参加某高中学校的数学自主招生考试,这次考试由十道选择题组成,得分要求是:做对一道题得1分,做错一道题扣去1分,不做得0分,总得分7分就算及格,小威的目标是至少得7分获得及格,在这次考试中,小威确定他做的前六题全对,记6分,而他做余下的四道题中,每道题做对的概率均为p,考试中,小威思量:从余下的四道题中再做一题并且及格的概率;从余下的四道题中恰做两道并且及格的概率,他发现,只做一道更容易及格.(1)设小威从余下的四道题中恰做三道并且及格的概率为,从余下的四道题中全做并且及格的概率为,求及;(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?22.(10分)某地区为了解群众上下班共享单车使用情况,根据年龄按分层抽样的方式调查了该地区50名群众,他们的年龄频数及使用共享单车人数分布如下表:年龄段20~2930~3940~4950~60频数1218155经常使用共享单车61251(1)由以上统计数据完成下面的列联表,并判断是否有95%的把握认为以40岁为分界点对是否经常使用共享单车有差异?年龄低于40岁年龄不低于40岁总计经常使用共享单车不经常使用共享单车总计附:,.0.250.150.100.0500.0250.0101.3232.0722.7063.8415.0246.635(2)若采用分层抽样的方式从年龄低于40岁且经常使用共享单车的群众中选出6人,再从这6人中随机抽取2人,求这2人中恰好有1人年龄在30~39岁的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

利用点到直线的距离公式求出|PF2|cos∠POF2=ac,由诱导公式得出cos∠POF1=-ac,在【详解】如下图所示,双曲线C的右焦点F2(c,0),渐近线l1由点到直线的距离公式可得|PF由勾股定理得|OP|=|O在RtΔPOF2中,∠OPF在ΔPOF2中,|OP|=a,|PFcos∠PO由余弦定理得cos∠POF1即c=2a,因此,双曲线C的离心率为e=c【点睛】本题考查双曲线离心率的求解,属于中等题。求离心率是圆锥曲线一类常考题,也是一个重点、难点问题,求解椭圆或双曲线的离心率,一般有以下几种方法:①直接求出a、c,可计算出离心率;②构造a、c的齐次方程,求出离心率;③利用离心率的定义以及椭圆、双曲线的定义来求解。2、A【解析】

将点带入直线可得,利用均值不等式“1”的活用即可求解.【详解】因为直线过点,所以,即,所以当且仅当,即时取等号所以斜率,故选A【点睛】本题考查均值不等式的应用,考查计算化简的能力,属基础题.3、C【解析】因为成等比数列,所以,利用正弦定理化简得:,又,所以原式=所以选C.点睛:此题考察正弦定理的应用,要注意求角度问题时尽量将边的条件转化为角的等式,然后根据三角函数间的关系及三角形内角和的关系进行解题.4、B【解析】分析:利用二项展开式的通项公式求出的第项,令的指数为2求出展开式中的系数.然后求解即可.详解:6展开式中通项

令可得,,

∴展开式中x2项的系数为1,

在的展开式中,含项的系数为:1.

故选:B.点睛:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.5、D【解析】

根据题意,分2步进行分析:①,将除丙之外的5人排成一排,要求甲在乙的前面,②,5人排好后有5个空位可选,在其中任选1个,安排丙,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:将除丙之外的5人排成一排,要求甲在乙的前面,有种情况,②5人排好后有5个空位可选,在其中任选1个,安排丙,有5种情况,则有60×5=300种不同的顺序,故选D.【点睛】本题考查排列、组合的实际应用,涉及分步计数原理的应用,属于基础题.6、C【解析】

根据题意,求出和,由公式即可求出解答.【详解】解:因为事件为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以事件发生且事件发生概率为:故.故选:C.【点睛】本题考查条件概率求法,属于中档题.7、A【解析】

构造函数,则可判断,故是上的增函数,结合即可得出答案.【详解】解:设,则,∵,,∴,∴是上的增函数,又,∴的解集为,即不等式的解集为.故选A.【点睛】本题考查导数与函数单调性的关系,构造函数是解题的关键.8、A【解析】

由题意知X~B(4,),根据二项分布的方差公式进行求解即可.【详解】∵每位同学能通过该测试的概率都是,且各人能否通过测试是相互独立的,∴X~B(4,),则X的方差D(X)=4(1)=1,故选A.【点睛】本题主要考查离散型随机变量的方差的计算,根据题意得到X~B(4,)是解决本题的关键.9、C【解析】

取特殊值a=1,b=0,c=-1进行验证即可。【详解】取a=1,b=0,c=-1代入,排除A、B、D,故选:C。【点睛】本题考查不等式的基本性质,不等式的基本性质、特殊值法是两种常用方法,但在利用特殊值法时取特殊值时要全面。10、C【解析】

作,垂足为点D.利用点在抛物线上、,结合抛物线的定义列方程求解即可.【详解】作,垂足为点D.由题意得点在抛物线上,则得.①由抛物线的性质,可知,,因为,所以.所以,解得:.②.由①②,解得:(舍去)或.故抛物线C的方程是.故选C.【点睛】本题考查抛物线的定义与几何性质,属于中档题.11、A【解析】因为f(x)在R上的单调增,所以由x2+x1>0,得x2>-x1,所以同理得即f(x1)+f(x2)+f(x3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行12、D【解析】

女歌手不相邻,则先排男生,再对女生插空即可.【详解】由插空法得.选D.【点睛】本题考查排列组合用插空法解决问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由左视图得出三棱锥中线面关系及棱的长度.【详解】由左视图知三棱锥的高为,底面等腰三角形的底边长为,又底面等腰三角形的腰长为2,这个等腰三角形的面积为,.故答案为:.【点睛】本题考查棱锥的体积,解题是由左视图得出棱锥的高为1,底面等腰三角形的底边长为,从而由体积公式可求得棱锥的体积,本题还考查了空间想象能力.14、【解析】

根据题意,分析可得函数f(x)=x2(2x﹣2﹣x)为奇函数且在R上是增函数,则不等式f(2x+1)+f(1)0可以转化为2x+1﹣1,解可得x的取值范围,即可得答案.【详解】根据题意,对于函数f(x)=x2(2x﹣2﹣x),有f(﹣x)=(﹣x)2(2﹣x﹣2x)=﹣x2(2x﹣2﹣x)=﹣f(x),则函数f(x)为奇函数,函数f(x)=x2(2x﹣2﹣x),其导数f′(x)=2x(2x﹣2﹣x)+x2•ln2(2x+2﹣x)>0,则f(x)为增函数;不等式f(2x+1)+f(1)0⇒f(2x+1)﹣f(1)⇒f(2x+1)f(﹣1)⇒2x+1﹣1,解可得x﹣1;即f(2x+1)+f(1)0的解集是[﹣1,+∞);故答案为[﹣1,+∞).【点睛】本题主要考查不等式的求解,利用条件判断函数的奇偶性和单调性,以及利用奇偶性和单调性的性质将不等式进行转化是解决本题的关键.15、【解析】

先求出基本事件的个数,再求出4种垃圾中至少有2种投入正确的桶中的事件的个数,最后利用古典概型求出概率即可.【详解】由题意可知:基本事件的个数为.设事件为4种垃圾中至少有2种投入正确的桶中,则事件包含的基本事件个数为:,所以.故答案为:【点睛】本题考查了古典概型计算公式,考查了分类讨论思想,考查了数学运算能力.16、①④⑤【解析】

理解新定义的意义,借助导数的几何意义逐一进行判断推理,即可得到答案。【详解】对于①,,所以是曲线在点处的切线,画图可知曲线在点附近位于直线的两侧,①正确;对于②,因为,所以不是曲线:在点处的切线,②错误;对于③,,,在的切线为,画图可知曲线在点附近位于直线的同侧,③错误;对于④,,在点处的切线为,画图可知曲线:在点附近位于直线的两侧,④正确;对于⑤,,,在点处的切线为,图可知曲线:在点附近位于直线的两侧,⑤正确.【点睛】本题以新定义的形式对曲线在某点处的切线的几何意义进行全方位的考查,解题的关键是已知切线方程求出切点,并对初等函数的图像熟悉,属于中档题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)先对求导,然后分别讨论和时的情况,从而得到的取值范围;(2)可令,再求导,就和两种情况再分别讨论恒成立问题即可得到答案.【详解】(1)①当时,恒成立,故在上递增,最多一个零点,不合题意;②当时,,,在上递增,在上递减,且时,,时,故要有两个零点,只需,解得:,综合①、②可知,的范围是:.(2)令,①当,恒成立,在上递增,,符合题意;②当时,在上递增,在上递增,又,若,即时,恒成立,同①,符合题意,若,即时,存在,使,时,,时,,在递减,在上递增,而,故不满足恒成立,综上所述,的范围是:.【点睛】本题主要考查利用导函数求解零点中含参问题,恒成立中含参问题,意在考查学生的转化能力,对学生的分类讨论的思想要求较高,难度较大.18、(1),;(2).【解析】

(1)利用和关系得到,验证时的情况得到,再利用等比数列公式得到数列的通项公式.(2)计算数列的通项公式,利用分组求和法得到答案.【详解】(1)当时,,当时,,与已知式作差得,即,欲使为等比数列,则,又.故数列是以为首项,2为公比的等比数列,所以.(2)由(1)有得..【点睛】本题考查了等比数列的通项公式,分组求和法求前n项和,意在考查学生的计算能力.19、(Ⅰ);(Ⅱ)见解析【解析】

(Ⅰ)由曲线在点处的切线平行于轴,可得,从而得到答案;(Ⅱ)令函数,要证,即证,利用导数求出的最小值即可。【详解】(Ⅰ)由题可得;,由于曲线在点处的切线平行于轴,得,即,解得:;(Ⅱ)当时,,要证明,即证:;令,求得;令,解得:,令,解得:,令,解得:,所以在上单调递减,在上单调递增,则,即,从而。【点睛】本题考查导数的几何意义,以及导数在研究函数中的应用,本题解题的关键是构造函数,利用导数求出函数的最小值,属于中档题。20、(I)(II)【解析】

(I)对函数进行求导,求出导函数小于零时,的取值范围即可。(II)利用导数求出函数的增区间,结合(1),判断当时,函数的单调性,然后求出最值。【详解】解:(I)由函数,求导当,解得即的减区间(II)当,解得即在上递减,在上递增故的值域【点睛】本题考查了利用导数研究函数的单调性及在闭区间上的最值问题。21、(1),.(2)时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论