河南省豫西南部分示范性高中2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第1页
河南省豫西南部分示范性高中2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第2页
河南省豫西南部分示范性高中2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第3页
河南省豫西南部分示范性高中2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第4页
河南省豫西南部分示范性高中2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正方体中,分别是的中点,则下列说法错误的是()A. B.平面C. D.平面2.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.23.如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有()A.120种 B.240种 C.144种 D.288种4.已知函数,的图象过点,且在上单调,的图象向左平移个单位后得到的图象与原图象重合,若存在两个不相等的实数,满足,则()A. B. C. D.5.对任意复数,为虚数单位,则下列结论中正确的是()A. B. C. D.6.已知命题;命题若,则.则下列命题为真命题的是A. B.C. D.7.命题“”的否定是()A. B.C. D.8.若直线的倾斜角为,则()A.等于 B.等于 C.等于 D.不存在9.如图,网格纸上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为()A. B. C. D.10.甲、乙、丙、丁四人参加驾校科目二考试,考完后,甲说:我没有通过,但丙已通过;乙说:丁已通过;丙说:乙没有通过,但丁已通过;丁说:我没有通过.若四人所说中有且只有一个人说谎,则科目二考试通过的是()A.甲和丁 B.乙和丙 C.丙和丁 D.甲和丙11.在极坐标系中,由三条直线,,围成的图形的面积为()A. B. C. D.12.在如图所示的计算的值的程序框图中,判断框内应填入A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,的系数是___.(用数字填写答案)14.________.15.已知集合,,,从这三个集合中各取一个元素构成空间直角坐标系中的点的坐标,则确定不同点的坐标个数为______.16.函数(,均为正数),若在上有最小值10,则在上的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程是.(1)写出曲线的直角坐标方程和直线的普通方程;(2)设直线与曲线交于,两点,求的面积.18.(12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,统计结果如下表所示,已知这100位顾客中一次购物量超过7件的顾客占.一次购物量1至3件4至7件8至11件12至15件16件及以上顾客数(人)272010结算时间(/人)0.511.522.5(1)确定,的值,并求顾客一次购物的结算时间的平均值;(2)从收集的结算时间不超过的顾客中,按分层抽样的方法抽取5人,再从这5人中随机抽取2人,求至少有1人的结算时间为的概率.(注:将频率视为概率)19.(12分)在区间上任取一个数记为a,在区间上任取一个数记为b.若a,,求直线的斜率为的概率;若a,,求直线的斜率为的概率.20.(12分)现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进人高三后,由于改进了学习方法,甲、乙这两个学生的考试数学成绩预计同时有了大的提升.若甲(乙)的高二任意一次考试成绩为,则甲(乙)的高三对应的考试成绩预计为(若>100.则取为100).若已知甲、乙两个学生的高二6次考试成绩分别都是由低到高进步的,定义为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值.(I)试预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别为多少?(计算结果四舍五入,取整数值)(Ⅱ)求的分布列和数学期望.21.(12分)已知函数,且曲线在点处的切线与直线平行.(1)求函数的单调区间;(2)若关于的不等式恒成立,求实数的取值范围.22.(10分)学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.(1)填写教师教学水平和教师管理水平评价的列联表:对教师管理水平好评对教师管理水平不满意合计对教师教学水平好评对教师教学水平不满意合计请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量.①求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);②求的数学期望和方差.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出结果.【详解】∵在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,

∴以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,

设正方体ABCD-A1B1C1D1中,棱长为2,

则B(2,2,0),C1(0,2,2),M(1,2,1),D1(0,0,2),C(0,2,0),N(0,1,1),

∴MN⊥CC1,故A正确;∴MN⊥平面ACC1A1,故B成立;

∵∴MN和AB不平行,故C错误;

平面ABCD的法向量又MN⊄平面ABCD,∴MN∥平面ABCD,故D正确.

故选C.【点睛】本题考查命题的真假判断,考空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.2、B【解析】

求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.3、D【解析】

首先计算出“黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,然后计算出“红色在左右两端,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,用前者减去后者,求得题目所求不同的涂色方案总数.【详解】不考虑红色的位置,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案有种.这种情况下,红色在左右两端的涂色方案有种;从而所求的结果为种.故选D.【点睛】本小题主要考查涂色问题,考查相邻问题、不在两端的排列组合问题的求解策略,考查对立事件的方法,属于中档题.4、A【解析】

由图像过点可得,由的图象向左平移个单位后得到的图象与原图象重合,可知,结合在上单调,从而得到,由此得到的解析式,结合图像,即可得到答案。【详解】因为的图象过点,则,又,所以.一方面,的图象向左平移单位后得到的图象与原函数图象重合,则,即,化简可知.另一方面,因为在上单调,所以,即,化简可知.综合两方面可知.则函数的解析式为,结合函数图形,因为,当时,,结合图象可知则,故选A.【点睛】本题主要考查正弦函数解析式的求法,以及函数图像的应用,考查学生的转化能力,属于中档题。5、B【解析】分析:由题可知,然后根据复数的运算性质及基本概念逐一核对四个选项得到正确答案.详解:已知则选项A,,错误.选项B,,正确.选项C,,错误.选项D,,不恒成立,错误.故选B.点睛:本题考查了复数的运算法则、共轭复数的定义、复数模的计算.6、B【解析】试题分析:显然命题是真命题;命题若,则是假命题,所以是真命题,故为真命题.考点:命题的真假.7、A【解析】

根据全称命题的否定形式书写.【详解】根据全称命题的否定形式可知“”的否定是“”.故选A.【点睛】本题考查全称命题的否定形式,属于简单题型.8、C【解析】分析:根据画出的直线得直线的倾斜角.详解:直线x=1的倾斜角为故答案为:C.点睛:(1)本题主要考查特殊直线的倾斜角,意在考查学生对该知识的掌握水平.(2)任意一条直线都有倾斜角,但是不是每一条直线都有斜率.9、D【解析】

由三视图还原出原几何体,然后计算其表面积.【详解】由三视图知原几何体是一个圆锥里面挖去一个圆柱,尺寸见三视图.圆锥的母线长为,.故选:D.【点睛】本题考查组合体的表面积,解题关键是由三视图还原出原几何体,确定几何体的结构.10、C【解析】

逐一验证,甲、乙、丙、丁说谎的情况,可得结果.【详解】若甲说谎,则可知丁通过,但丁说没通过,故矛盾若乙说谎则可知丁没有通过,但丙说丁通过,故矛盾若丙说谎则可知丁通过,但丁说没有通过,故矛盾若丁说谎,则可知丙、丁通过了科目二所以说谎的人是丁故选:C【点睛】本题考查论证推理,考验逻辑推理以及阅读理解的能力,属基础题.11、B【解析】

求出直线与直线交点的极坐标,直线与直线交点的极坐标,然后利用三角形的面积公式可得出结果.【详解】设直线与直线交点的极坐标,则,得.设直线与直线交点的极坐标,则,即,得.因此,三条直线所围成的三角形的面积为,故选:B.【点睛】本题考查极坐标系中三角形面积的计算,主要确定出交点的极坐标,并利用三角形的面积公式进行计算,考查运算求解能力,属于中等题.12、D【解析】程序运行过程中,各变量值如下表所示:第一圈:S=0+1,i=5,第二圈:S=1+3,i=9,第三圈:S=1+3+5,i=13,…依此类推,第503圈:1+3+5+…+2013,i=2017,退出循环,其中判断框内应填入的条件是:i⩽2013,本题选择D选项.二、填空题:本题共4小题,每小题5分,共20分。13、28【解析】分析:由题意知本题要求二项式定理展开式的一个项的系数,先写出二项式的通项,使得变量x的指数等于5,解出r的值,把r的值代入通项得到这一项的系数.详解:要求x5的系数,

∴8-=5,

∴r=2,

∴x5的系数是(-1)2C82=28,

故答案为28点睛:本题是一个典型的二项式问题,主要考查二项式的通项,注意二项式系数和项的系数之间的关系,这是容易出错的地方,本题考查展开式的通项式,这是解题的关键.14、【解析】

将定积分分为两部分,前一部分根据奇函数积分为0,后一部分转化为几何面积得到答案.【详解】为奇函数表示半径为3的半圆面积:为故答案为:【点睛】本题考查了定积分的计算,根据奇函数的性质可以简化运算.15、【解析】

先从三个集合中各取一个元素,计算出所构成的点的总数,再减去两个坐标为时点的个数,即可得出结果.【详解】集合,,,从这三个集合中各选一个元素构成空间直角坐标系中的点的个数为,其中点的坐标中有两个的点为、、,共个,在选的时候重复一次,因此,确定不同点的坐标个数为.故答案为:.【点睛】本题考查排列组合思想的应用,解题时要注意元素的重复,结合间接法求解,考查计算能力,属于中等题.16、【解析】分析:将函数变形得到函数是奇函数,假设在处取得最小值,则一定在-m处取得最大值,再根据函数值的对称性得到结果.详解:,可知函数是奇函数,假设在处取得最小值,则一定在-m处取得最大值,故在上取得的最大值为故答案为:-4.点睛:这个题目考查了函数的奇偶性,奇函数关于原点中心对称,在对称点处分别取得最大值和最小值;偶函数关于y轴对称,在对称点处的函数值相等,中经常利用函数的这些性质,求得最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线的直角坐标方程为;直线的普通方程为;(2).【解析】

(1)由极坐标与直角坐标的互化公式,即可得出曲线的直角坐标方程;根据直线的参数方程,消去参数,即可得到普通方程;(2)先由题意,先设,对应的参数分别为,,将直线的参数方程化为,代入,根据参数下的弦长公式求出,再由点到直线距离公式,求出点到直线的距离,进而可求出三角形的面积.【详解】(1)由得,即,即曲线的直角坐标方程为;由消去可得:,即直线的普通方程为;(2)因为直线与曲线交于,两点,设,对应的参数分别为,,由可化为,代入得,,则有,,因此,又点到直线的距离为,因此的面积为.【点睛】本题主要考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,以及参数下的弦长问题,属于常考题型.18、(1),,;(2)【解析】

(1)由条件可得,从而可求出,的值,再计算顾客一次购物的结算时间的平均值

(2)结算时间不超过的顾客有45人,则按分层抽样抽取5人,从结算时间为的人中抽取2人,从结算时间为的人中抽取3人,列举出基本事件数,再列举出至少有1人结算时间为所包含基本事件数,用古典概率可求解.【详解】解:(1)由已知得,∴,,∴.该超市所有顾客一次购物的结算时间组成一个总体,

所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,

顾客一次购物的结算时间的平均值可用样本平均数估计,

其估计值为.(2)结算时间不超过共有45人,其中结算时间为的有18人,

结算时间为的有27人,

结算时间为的人数:结算时间为的人数,

则按分层抽样抽取5人,从结算时间为的人中抽取人,

从结算时间为的人中抽取人.记抽取结算时间为的2人分别为,,

抽取结算时间为的3人分别为,,,

表示抽取的两人为,,基本事件共有10个:,,,,,,

,,,.记至少有1人结算时间为为事件,包含基本事件共有7个:,,,,,,,∴,故至少有1人结算时间为的概率.【点睛】本题考查统计中求平均数和分层抽样以及用古典概率公式计算概率,属于基础题.19、(1);(2).【解析】

,2,3,4,1,6,,2,3,4,1,基本事件总数,再列出满足条件的基本事件有6个,由古典概型概率计算公式求解;有序实数对满足,而满足直线的斜率为,即,画出图形,由测度比是面积比得答案.【详解】解:在区间上任取一个数记为a,在区间上任取一个数记为b,a,,,2,3,4,1,6,,2,3,4,1.基本事件总数,直线的斜率为,即,也就是,满足条件的基本事件有6个,分别是:,,,,,,直线的斜率为的概率;在区间上任取一个数记为a,在区间上任取一个数记为b,a,,有序实数对满足,而满足直线的斜率为,即,如图:,.直线的斜率为的概率.【点睛】本题考查概率的求法,注意列举法和几何概型的合理运用,是中档题.20、(1)见解析;(2)见解析【解析】

(I)先依题意预测出高三的6次考试成绩,由平均数的公式,分别计算即可;(Ⅱ)由题意先写出随机变量的取值,以及对应的概率,即可求出分布列和期望.【详解】(I)由已知,预测高三的6次考试成绩如下:第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲7886899698100乙8185929496100甲高三的6次考试平均成绩为,乙高三的6次考试平均成绩为所以预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别约为91,91.(Ⅱ)因为为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值,所以=0,1,2,3所以,,,.所以的分布列为0123所以【点睛】本题主要考查平均数的计算以及离散型随机变量的分布列与期望,属于基础题型.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论