版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是()A. B. C. D.2.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A.0.286×105B.2.86×105C.28.6×103D.2.86×1043.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m> B.m C.m= D.m=4.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90° B.120° C.270° D.360°5.根据总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60000000000用科学记数法表示为()A.0.6×1010 B.0.6×1011 C.6×1010 D.6×10116.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是().A.36° B.54° C.72° D.30°7.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为()A.+=18 B.=18C.+=18 D.=188.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等9.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30° B.36° C.54° D.72°10.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()A. B. C. D.11.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-12.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为______.14.如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=________度.15.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.16.如图,将的边绕着点顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结.当时,我们称是的“双旋三角形”.如果等边的边长为a,那么它的“双旋三角形”的面积是__________(用含a的代数式表示).17.(题文)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.18.因式分解:a3-a=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2.①求的值;②若点G为AE上一点,求OG+EG最小值.20.(6分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.21.(6分)计算:4cos30°﹣+20180+|1﹣|22.(8分)计算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);23.(8分)先化简,再求值:,其中a为不等式组的整数解.24.(10分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线.(1)求该一次函数表达式;(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围.25.(10分)如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC.求证:△BDA∽△CED.26.(12分)在平面直角坐标系中,点,,将直线平移与双曲线在第一象限的图象交于、两点.(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;(2)若,①如图2,当时,求的值;②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为.27.(12分)“六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只.(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
根据反比例函数的图像性质进行判断.【详解】解:∵,电压为定值,∴I关于R的函数是反比例函数,且图象在第一象限,故选C.【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键.2、D【解析】
用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可【详解】28600=2.86×1.故选D.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键3、C【解析】试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴△=32-4×2m=9-8m=0,解得:m=.故选C.4、B【解析】
先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.5、C【解析】
解:将60000000000用科学记数法表示为:6×1.故选C.【点睛】本题考查科学记数法—表示较大的数,掌握科学计数法的一般形式是解题关键.6、A【解析】
由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=2x.在△ABC中,用内角和定理列方程求解.【详解】解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x.又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故选A.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.7、B【解析】
根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B【点睛】本题考核知识点:分式方程的应用.解题关键点:根据时间关系,列出分式方程.8、C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.9、B【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.【详解】解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.10、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解:∵EF∥AB,∴△CEF∽△CAB,∴,故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.11、B【解析】
根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.12、B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】试题解析:∵正方体的展开图中对面不存在公共部分,∴B与-1所在的面为对面.∴B内的数为1.故答案为1.14、1【解析】
利用圆周角定理得到∠ADB=90°,再根据切线的性质得∠ABC=90°,然后根据等腰三角形的判定方法得到△ABC为等腰直角三角形,从而得到∠C的度数.【详解】解:∵AB为直径,∴∠ADB=90°,∵BC为切线,∴AB⊥BC,∴∠ABC=90°,∵AD=CD,∴△ABC为等腰直角三角形,∴∠C=1°.故答案为1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰直角三角形的判定与性质.15、3【解析】
在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,=0.3,解得m=3.故答案为:3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.16、.【解析】
首先根据等边三角形、“双旋三角形”的定义得出△AB'C'是顶角为150°的等腰三角形,其中AB'=AC'=a.过C'作C'D⊥AB'于D,根据30°角所对的直角边等于斜边的一半得出C'DAC'a,然后根据S△AB'C'AB'•C'D即可求解.【详解】∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如图,过C'作C'D⊥AB'于D,则∠D=90°,∠DAC'=30°,∴C'DAC'a,∴S△AB'C'AB'•C'Da•aa1.故答案为:a1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积.17、12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BP⊥AC时,BP有最小值,观察图象可得,BP的最小值为4,即BP⊥AC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以ΔABC的面积是118、a(a-1)(a+1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析(2)①②3【解析】
(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=3.故OG+EG最小值是3.【详解】(1)连接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切线(2)①解:连接BE∵直径AB∴∠AEB=90°∵圆O与BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②连接OF,交AE于G,由①,设BC=2x,则AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合题意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+EG最小值是3.【点睛】本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.20、(8+8)m.【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【详解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.21、【解析】
先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.【详解】原式===【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.22、(1)1;(2)2a+2【解析】
(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入原式即可求出答案.【详解】解:(1)原式=﹣1+2﹣+2×=1;(2)原式=a2+2a+1+1﹣a2=2a+2.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.23、,1【解析】
先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.【详解】解:原式=[﹣]==,∵不等式组的解为<a<5,其整数解是2,3,4,a不能等于0,2,4,∴a=3,当a=3时,原式==1.【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.24、(1);(2).【解析】
(1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;(2)根据直线上的点Q(x,y)在直线的下方可得2x-1<3x+2,解不等式即得结果.【详解】解:(1)∵一次函数平行于直线,∴可设该一次函数的解析式为:,∵直线过点M(4,7),∴8+b=7,解得b=-1,∴一次函数的解析式为:y=2x-1;(2)∵点Q(x,y)是该一次函数图象上的点,∴y=2x-1,又∵点Q在直线的下方,如图,∴2x-1<3x+2,解得x>-3.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.25、证明见解析.【解析】
不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.【详解】∵AB是⊙O直径,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.26、(1)作图见解析,,;(2)①k=6;②.【解析】
(1)根据题意,画出对应的图形,根据旋转的性质可得,,从而求出点E、F的坐标;(2)过点作轴于,过点作轴于,过点作于,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《民商法案例研讨》2021-2022学年第一学期期末试卷
- 黄山学院《单片机原理及应用》2022-2023学年期末试卷
- 淮阴师范学院《原子物理学》2021-2022学年第一学期期末试卷
- 淮阴师范学院《新世纪文学批评》2022-2023学年第一学期期末试卷
- 黄山学院《电工电子技术》2021-2022学年期末试卷
- 淮阴师范学院《国际贸易理论与实务(2)》2021-2022学年第一学期期末试卷
- 淮阴工学院《数据库原理及应用2》2021-2022学年期末试卷
- 淮阴工学院《汽车设计》2022-2023学年第一学期期末试卷
- 淮阴工学院《园艺植物栽培学1》2023-2024学年第一学期期末试卷
- 淮阴工学院《现当代文学》2021-2022学年第一学期期末试卷
- 企业法律合规与外部监管的内外因素分析
- 2022年版煤矿安全规程
- 九年级数学上册 期中考试卷(湘教版)
- 冷弯机行业市场研究报告
- 牛津英语四年级上册4A-M2-Unit-3-The-lion-and-the-mouse优秀信息化教案附反思
- 山东省青岛市胶州市2023-2024学年八年级上学期期中英语试卷
- 第三单元“阅读策略”(主题阅读) 六年级语文上册阅读理解(统编版)
- 河北省保定市定州市2023-2024学年六年级上学期期中质量监测科学测试卷
- 吉林省名校调研2023-2024学年七年级上学期期中测试数学试卷
- 胸腔镜下肺癌根治术手术室护理查房
- 卸料平台安装巡视检查记录
评论
0/150
提交评论