广西贺州平桂高级中学2023年高二数学第二学期期末达标测试试题含解析_第1页
广西贺州平桂高级中学2023年高二数学第二学期期末达标测试试题含解析_第2页
广西贺州平桂高级中学2023年高二数学第二学期期末达标测试试题含解析_第3页
广西贺州平桂高级中学2023年高二数学第二学期期末达标测试试题含解析_第4页
广西贺州平桂高级中学2023年高二数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数满足条件,则的最小值为A. B. C. D.2.已知,直线过点,则的最小值为()A.4 B.3 C.2 D.13.若复数满足,其中为虚数单位,是的共轭复数,则复数()A. B. C.4 D.54.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e2i表示的复数在复平面中对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.函数的图像大致为()A. B.C. D.6.五个人站成一排,其中甲乙相邻的站法有()A.18种 B.24种 C.48种 D.36种7.若定义域为的偶函数满足,且当时,,则函数在上的最大值为()A.1 B. C. D.-8.在ΔABC中,∠ACB=π2,AC=BC,现将ΔABC绕BC所在直线旋转至ΔPBC,设二面角P-BC-A的大小为θ,PB与平面ABC所成角为α,PC与平面PAB所成角为β,若0<θ<π,则(A.α>θ B.β<θ C.0<α≤π49.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为10,14,则输出的()A.6 B.4 C.2 D.010.的展开式中的系数为A. B. C. D.11.若,则的最小值为()A.2 B.4 C.6 D.812.“不等式成立”是“不等式成立”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.在二项式的展开式中,前三项的系数依次成等差数列,则展开式中含的项为______.14.从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽一只,设抽取次品数为,则=_____15.已知,则最小值为________.16.若实数满足条件则的取值范围为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)讨论的单调性;(2)若存在及唯一正整数,使得,求的取值范围.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2+acos2=c.(Ⅰ)求证:a,c,b成等差数列;(Ⅱ)若C=,△ABC的面积为2,求c.19.(12分)已知二次函数的图像经过点,且满足,(1)求的解析式;(2)已知,求函数在的最大值和最小值;函数的图像上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由20.(12分)在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(),圆C的参数方程(θ为参数).(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;(Ⅱ)判断直线l与圆C的位置关系.21.(12分)设且,函数.(1)当时,求曲线在处切线的斜率;(2)求函数的极值点.22.(10分)已知圆C的圆心在x轴上,且经过两点,.(1)求圆C的方程;(2)若点P在圆C上,求点P到直线的距离的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:作出约束条件的平面区域,易知z=的几何意义是点A(x,y)与点D(﹣1,0)连线的直线的斜率,从而解得.详解:由题意作实数x,y满足条件的平面区域如下,z=的几何意义是点P(x,y)与点D(﹣1,0),连线的直线的斜率,由,解得A(1,1)故当P在A时,z=有最小值,z==.故答案为:B.点睛:(1)本题主要考查线性规划和斜率的应用,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)表示两点所在直线的斜率.2、A【解析】

先得a+3b=1,再与相乘后,用基本不等式即可得出结果.【详解】依题意得,,所以,当且仅当时取等号;故选A【点睛】本题考查了基本不等式及其应用,熟记基本不等式即可,属于基础题.3、D【解析】

根据复数的四则运算法则先求出复数z,再计算它的模长.【详解】解:复数z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故选D.【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.4、B【解析】

由题意得,得到复数在复平面内对应的点,即可作出解答.【详解】由题意得,e2i=cos2+isin2,∴复数在复平面内对应的点为(cos2,sin2).∵2∈,∴cos2∈(-1,0),sin2∈(0,1),∴e2i表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.5、B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6、C【解析】

将甲乙看作一个大的元素与其他元素进行排列,再乘即可得出结论.【详解】五个人站成一排,其中甲乙相邻,将甲乙看作一个大的元素与其他3人进行排列,再考虑甲乙顺序为,故共种站法.故选:C.【点睛】本题考查排列组合的应用,求排列组合常用的方法有:元素优先法、插空法、捆绑法、隔板法、间接法等,解决排列组合问题对学生的抽象思维能力和逻辑思维能力要求较高,本题属于简单题.7、A【解析】

根据已知的偶函数以及f(2﹣x)=﹣f(x)可以求得函数f(x)在[﹣2,2]上的解析式,进而得到g(x)在[﹣2,2]上的解析式,对g(x)进行求导可知g(x)的增减性,通过增减性求得最大值【详解】根据,得函数关于点(1,0)对称,且当时,,则时,,所以当时,;又函数为偶函数,所以当时,则,可知当,故在[-2,0)上单调递增,时,在[0,2]上单调递减,故.故选:A【点睛】本题考查函数的基本性质:对称性,奇偶性,周期性.同时利用导函数的性质研究了函数在给定区间内的最值问题,是中档题8、C【解析】

由题意画出图形,由线面角的概念可得α的范围,得到C正确,取特殊情况说明A,B,D错误.【详解】如图,ΔABC为等腰直角三角形,AC=BC,将ΔABC绕BC所在直线旋转至ΔPBC,则PC⊥BC,可得BC⊥平面PAC,∴二面角P-BC-A的大小θ=∠ACP,PB是平面ABC的一条斜线,则PC与平面ABC垂直时,PB与平面ABC所成角最大,则α的范围为(0,π4],故此时α<θ,故A错误;当PC与平面ABC垂直时,三棱锥C-PAB满足CA⊥CB,CA⊥CP,CB⊥CP,CA=CB=CP,则PA=PB=AB,设AC=BC=1,则PA=PB=AB=2,C在平面PAB的射影为ΔPAB求得OP=63,即PC与平面PAB所成角β的余弦值cosβ=63当θ无限接近0时,β无限接近π4,β>θ,故B综上,正确的选项是C.故选:C.【点睛】本题考查空间角及其求法,考查空间想象能力与思维能力,属难题.9、C【解析】

由程序框图,先判断,后执行,直到求出符合题意的.【详解】由题意,可知,,满足,不满足,则,满足,满足,则,满足,满足,则,满足,不满足,则,不满足,输出.故选C.【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.10、D【解析】分析:先求出二项式展开式的通项,再令x的指数为4得到r的值,即得的展开式中的系数.详解:由题得二项展开式的通项为,令10-3r=4,所以r=2,所以的展开式中的系数为.故答案为:D.点睛:(1)本题主要考查二项式展开式中某项的系数的求法,意在考查学生对该知识的掌握水平.(2)的展开式中的系数为,不是,要把二项式系数和某一项的系数两个不同的概念区分开.11、C【解析】

利用均值不等式求解即可.【详解】∵(当且仅当n=3时等号成立)故选:C.【点睛】本题主要考查了均值不等式求最值.注意把握好一定,二正,三相等的原则.12、A【解析】

分别求解不等式与再判定即可.【详解】可得,解得.又解得.故“不等式成立”是“不等式成立”的充分不必要条件.故选:A【点睛】本题主要考查了分式与二次不等式的求解以及充分必要条件的判定.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求出二项式展开式的通项,得出展开式前三项的系数,由前三项的系数依次成等差数列求出的值,然后利用的指数为,求出参数的值,并代入通项可得出所求项.【详解】二项式展开式的通项为,由题意知,、、成等差数列,即,整理得,,解得,令,解得.因此,展开式中含的项为.故答案为:.【点睛】本题考查二项式中指定项的求解,同时也考查了利用项的系数关系求指数的值,解题的关键就是利用展开式通项进行计算,考查运算求解能力,属于中等题.14、3【解析】抽取次品数满足超几何分布:,故,,,其期望,故.15、4【解析】

把所求式子看作两点间距离的平方,再根据直线与曲线位置关系求最值【详解】看作两点之间距离的平方。点A在直线上,点B在曲线上,取所以,即最小值为4.【点睛】本题考查两点间距离公式以及利用导数求最值,考查综合分析求解能力,属中档题.16、【解析】分析:根据满足条件画出可行域,然后分析的最值详解:满足条件即,画出可行域:根据可行域可知,目标函数在A点处取得最小值,在C点处取得最大值,所以的取值范围为点睛:点睛:线性规划要能够准确画出可行域,尤其是判断每一个不等式代表的是直线的左侧还是右侧时不能出错,常用带点方法判断比较准确。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的单调递减区间是,单调递增区间是;(2)的取值范围是.【解析】试题分析:(1)求出函数的导函数,通过对导函数符号的讨论可得函数的单调性.(2)由题意得函数在上的值域为.结合题意可将问题转化为当时,满足的正整数解只有1个.通过讨论的单调性可得只需满足,由此可得所求范围.试题解析:(1)由题意知函数的定义域为.因为,所以,令,则,所以当时,是增函数,又,故当时,单调递减,当时,单调递增.所以上单调递减,在上单调递增.(2)由(1)知当时,取得最小值,又,所以在上的值域为.因为存在及唯一正整数,使得,所以满足的正整数解只有1个.因为,所以,所以在上单调递增,在上单调递减,所以,即,解得.所以实数的取值范围是.点睛:本题中研究方程根的情况时,通过导数研究函数的单调性、最大(小)值、函数图象的变化趋势等,根据题目画出函数图象的草图,通过数形结合的思想去分析问题,使问题的解决有一个直观的形象,然后在此基础上再转化为不等式(组)的问题,通过求解不等式可得到所求的参数的取值(或范围).18、(1)见解析(2)【解析】

试题分析:(1)先根据二倍角公式降次,再根据正弦定理将边化为角,结合两角和正弦公式以及三角形内角关系化简得sinB+sinA=2sinC,最后根据正弦定理得a+b=2c(2)先根据三角形面积公式得ab=8,再根据余弦定理解得c.试题解析:(Ⅰ)证明:由正弦定理得:即,∴sinB+sinA+sinBcosA+cosBsinA=3sinC∴sinB+sinA+sin(A+B)=3sinC∴sinB+sinA+sinC=3sinC…∴sinB+sinA=2sinC∴a+b=2c∴a,c,b成等差数列.(Ⅱ)…,c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a+b)2﹣3ab=4c2﹣1.…∴c2=8得19、(1);(2)当时,,当,当,;当,;(3).【解析】

(1)由得到函数的对称轴,所以,再根据函数所过的点得到c=11,进而得到函数表达式;(2)根据函数表达式将绝对值去点,写成分段形式,讨论t的范围,进而得到最值;设函数的图像上存在点符合要求其中则,从而,变形为,根据数据43为质数,故可得到结果.【详解】(1)因为二次函数所以二次函数的对称轴方程为,即,所以.又因为二次函数的图像经过点所以,解得,因此,函数的解析式为.(2)由(1)知,=,所以,当时,,当,当,当,,如果函数的图像上存在点符合要求其中则,从而即,注意到43是质数,且,所以有,解得,因此,函数的图像上存在符合要求的点,它的坐标为.【点睛】本题主要考查分段函数的应用,属于中档题.分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.20、见解析【解析】

(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;(Ⅱ)求出圆的圆心与半径,判断圆心与直线的距离与半径的关系,即可判断直线l与圆C的位置关系.【详解】解:(Ⅰ)M,N的极坐标分别为(2,1),(),所以M、N的直角坐标分别为:M(2,1),N(1,),P为线段MN的中点(1,),直线OP的平面直角坐标方程y;(Ⅱ)圆C的参数方程(θ为参数).它的直角坐标方程为:(x﹣2)2+(y)2=4,圆的圆心坐标为(2,),半径为2,直线l上两点M,N的极坐标分别为(2,1),(),方程为y(x﹣2)(x﹣2),即x+3y﹣21.圆心到直线的距离为:2,所以,直线l与圆C相交.【点睛】本题考查圆的参数方程,极坐标方程与直角坐标方程的转化,直线与圆的位置关系,考查计算能力.21、(1).(2)见解析.【解析】试题分析:(1)由已知中函数,根据a=2,我们易求出f(3)及f′(3)的值,代入即可得到切线的斜率k=f′(3).(2)由已知我们易求出函数的导函数,令导函数值为0,我们则求出导函数的零点,根据m>0,我们可将函数的定义域分成若干个区间,分别在每个区间上讨论导函数的符号,即可得到函数函数f(x)的极值点.试题解析:(1)由已知得x>0.当a=2时,f′(x)=x-3+,f′(3)=,所以曲线y=f(x)在(3,f(3))处切线的斜率为.(2)f′(x)=x-(a+1)+==.由f′(x)=0,得x=1或x=a.①当0<a<1时,当x∈(0,a)时,f′(x)>0,函数f(x)单调递增;当x∈(a,1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论