版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在△中,,是上的一点,若,则实数的值为()A. B. C. D.2.已知直线是圆的对称轴,则实数()A. B. C.1 D.23.若正数满足,则当取最小值时,的值为()A. B. C. D.4.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移个单位,则所得函数图像对应的解析式为()A. B.C. D.5.已知函数,则函数的定义域为()A. B. C. D.6.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.400,40 B.200,10 C.400,80 D.200,207.长方体中,,,则直线与平面ABCD所成角的大小()A. B. C. D.8.已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:x+y-6≤0x-y+4≥0y≥0A.-∞,-73∪75,+∞9.从名学生志愿者中选择名学生参加活动,若采用下面的方法选取:先用简单随机抽样从人中剔除人,剩下的人再按系统抽样的方法抽取人,则在人中,每人入选的概率()A.不全相等 B.均不相等C.都相等,且为 D.都相等,且为10.从、、中任取两个字母排成一列,则不同的排列种数为()A. B. C. D.11.命题;命题.若为假命题,为真命题,则实数的取值范围是()A. B.或C.或 D.或12.命题的否定是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=________.14.要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为.(以数字作答)15.在1,2,3,…,80这八十个数中,随机抽取一个数作为数,将分别除以3,5,7后所得余数按顺序拼凑成一个具有三位数字的数,例如,时,时,.若,则_____.16.已知复数z=1+mi(i是虚数单位,m∈R),且(3+i)为纯虚数(是的共轭复数)则=_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)现计划用两张铁丝网在一片空地上围成一个梯形养鸡场,,,已知、两段是由长为的铁丝网折成,、两段是由长为的铁丝网折成.设上底的长为,所围成的梯形面积为.(1)求S关于x的函数解析式,并求x的取值范围;(2)当x为何值时,养鸡场的面积最大?最大面积为多少?18.(12分)在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.(1)求y关于t的线性回归方程;(2)预测该地区2016年的居民人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:,19.(12分)已知,.(1)求证:;(2)若不等式对一切实数恒成立,求实数的取值范围.20.(12分)已知的展开式前两项的二项式系数之和为1.(1)求的值.(2)求出这个展开式中的常数项.21.(12分)某超市为了解气温对某产品销售量的影响,随机记录了该超市12月份中天的日销售量(单位:千克)与该地当日最低气温(单位:)的数据,如下表所示:求关于的线性回归方程;(精确到)判断与之间是正相关还是负相关;若该地12月份某天的最低气温为,请用中的回归方程预测该超市当日的销售量.参考公式:,参考数据:,22.(10分)用数学归纳法证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
先根据共线关系用基底表示,再根据平面向量基本定理得方程组解得实数的值.【详解】如下图,∵三点共线,∴,∴,即,∴①,又∵,∴,∴②,对比①,②,由平面向量基本定理可得:.【点睛】本题考查向量表示以及平面向量基本定理,考查基本分析求解能力.2、B【解析】
由于直线是圆的对称轴,可知此直线过圆心,将圆心坐标代入直线方程中可求出的值【详解】解:圆的圆心为,因为直线是圆的对称轴,所以直线过圆心,所以,解得,故选:B【点睛】此题考查直线与圆的位置关系,利用了圆的对称性求解,属于基础题3、A【解析】
根据正数满足,利用基本不等式有,再研究等号成立的条件即可.【详解】因为正数满足,所以,所以,当且仅当,即时取等号.故选:A【点睛】本题主要考查基本不等式取等号的条件,还考查了运算求解的能力,属于基础题.4、B【解析】
函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得,再将所得图像向左平移个单位,得,选B.5、B【解析】
根据对数的真数大于零,负数不能开偶次方根,分母不能为零求解.【详解】因为函数,所以,所以,解得,所以的定义域为.故选:B【点睛】本题主要考查函数定义域的求法,还考查了运算求解的能力,属于基础题.6、A【解析】
由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.7、B【解析】
连接,根据长方体的性质和线面角的定义可知:是直线与平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用锐角三角函数知识可以求出的大小.【详解】连接,在长方体中,显然有平面ABCD,所以是直线与平面ABCD所成角,在底面ABCD中,,在中,,故本题选B.【点睛】本题考查了线面角的求法,考查了数学运算能力.8、A【解析】
分析:画出可行域,由可行域结合圆C与x轴相切,得到b=1且-3≤a≤5,从而可得结果.详解:画出可行域如图,由圆的标准方程可得圆心C(a,b),半径为1因为圆C与x轴相切,所以b=1,直线y=1分别与直线x+y-6=0与x-y+4=0交于点B5,1所以-3≤a≤5,圆心C(a,b)与点(2,8-3≤a<2时,k∈72<a≤5时k∈-所以圆心C(a,b)与点(2,8)连线斜率的取值范围是-点睛:本题主要考查可行域、含参数目标函数最优解,属于中档题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.9、D【解析】
根据简单随机抽样与系统抽样方法的定义,结合概率的意义,即可判断出每个人入选的概率.【详解】在系统抽样中,若所给的总体个数不能被样本容量整除时,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,所以,每个个体被抽到包括两个过程,一是不被剔除,二是选中,这两个过程是相互独立的,因此,每个人入选的概率为.故选:D.【点睛】本题考查简单随机抽样和系统抽样方法的应用,也考查了概率的意义,属于基础题.10、D【解析】
从、、中任取两个字母排成一列,直接利用排列数公式可得出结果.【详解】由排列数的定义可知,从、、中任取两个字母排成一列,则不同的排列种数为.故选:D.【点睛】本题考查排列数的应用,考查计算能力,属于基础题.11、B【解析】
首先解出两个命题的不等式,由为假命题,为真命题得命题和命题一真一假.【详解】命题,命题.因为为假命题,为真命题.所以命题和命题一真一假,所以或,选择B【点睛】本题主要考查了简易逻辑的问题,其中涉及到了不等式以及命题真假的判断问题,属于基础题.12、A【解析】
根据命题“”是特称命题,其否定为全称命题,将“∃”改为“∀”,“≤“改为“>”即可得答案【详解】∵命题“”是特称命题∴命题的否定为.故选A.【点睛】本题主要考查全称命题与特称命题的相互转化问题.这里注意全称命题的否定为特称命题,反过来特称命题的否定是全称命题.二、填空题:本题共4小题,每小题5分,共20分。13、-【解析】
先根据已知和三角函数的坐标定义得到cosα=x=,解方程解答x的值,再利用三角函数的坐标定义求tanα的值.【详解】因为α是第二象限角,所以cosα=x<0,即x<0.又cosα=x=,解得x=-3,所以tanα==-.故答案为-【点睛】(1)本题主要考查三角函数的坐标定义,意在考查学生对该知识的掌握水平和分析推理能力.(2)点p(x,y)是角终边上的任意的一点(原点除外),r代表点到原点的距离,则sin=cos=,tan=.14、288.【解析】解:∵数学课排在前3节,英语课不排在第6节,∴先排数学课有种排法,再排最后一节有种排法,剩余的有种排法,∴根据分步计数原理知共有=288种排法.15、49【解析】
由的个位数字为0,所以一定是7的倍数,它可能的取值为7,14,21,28,35,42,49,56,63,70,77,再分别求出它们所对应的数,可知。【详解】由的个位数字为0,所以一定是7的倍数,它可能的取值为7,14,21,28,35,42,49,56,63,70,77,它们所对应的数分别为120,240,010,130,200,020,140,210,030,100,220,故。【点睛】本题主要考查合情推理,列举找规律。16、【解析】
先求出的表达式,再由纯虚数的定义,可求出的值,进而可求出.【详解】由题意,,,则为纯虚数,故,解得.故,.【点睛】本题考查了复数代数形式的四则运算,考查了共轭复数、复数的模、纯虚数的定义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,(2)当x为时,养鸡场的面积最大,最大为.【解析】
(1)由已知条件的该梯形为等腰梯形,作出高,用含的代数式表示出上、下底和高,从而表示出面积;(2)利用导数最值求出最大值【详解】解:(1)由题意,,,过A点作,垂足为E,则,梯形的高由,解得.综上,,(2)设,,令,得(,舍去)时,,单调递增,时,,单调递减.∴当时,的最大值是1080000,此时.∴当为时,养鸡场的面积最大,最大为.【点睛】本题主要考察用函数模型解决实际问题,利用导数研究函数的单调性,属于基础题.18、(1)(2)千元【解析】
(1)根据所给的数据利用最小二乘法.写出线性回归方程的系数和a的值,写出线性回归方程,注意运算过程中不要出错.(2)将2016年的年份代号t=9代入前面的回归方程,预测该地区2016年的居民人均纯收入.【详解】解:(1)由已知表格的数据,得,,,,∴.∴.∴y关于t的线性回归方程是.(2)由(1),知y关于t的线性回归方程是.将2016年的年份代号代入前面的回归方程,得.故预测该地区2016年的居民人均收入为千元.【点睛】本题考查线性回归方程,是一个基础题,解题的关键是利用最小二乘法写出线性回归系数,注意解题的运算过程不要出错.19、(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(1)由题意结合柯西不等式的结论即可证得题中的结论;(2)结合(1)的结论可得绝对值不等式,零点分段求解绝对值不等式可得实数的取值范围为.试题解析:(Ⅰ)证明:由柯西不等式得,,的取值范围是.(Ⅱ)由柯西不等式得.若不等式对一切实数恒成立,则,其解集为,即实数的取值范围为.20、(1)(2)672【解析】试题分析:(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可试题解析:(1)即(2)展开式的通项令且得展开式中的常数项为第7项,即考点:二项式系数的性质21、(1)(2)与负相关,预测该超市当日的销售量为千克【解析】
(1)根据线性回归直线的求解方法求解;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 售后服务协议合同常见问题
- 空调内部结构优化质保服务
- 采购合同样式集锦
- 灯具安装合同样本
- 计划成长担保
- 心理测评与咨询协议
- 退款协议书合同范本
- 重建幸福家庭的诺言
- 别墅石材招标文件
- 工作责任保证书样本
- 土木工程制图(黑龙江联盟)智慧树知到期末考试答案2024年
- DL-T 572-2021电力变压器运行规程-PDF解密
- 2024年贵州贵安新区产业发展控股集团有限公司招聘笔试参考题库含答案解析
- RBA-6.0-培训教材课件
- 塑造安全文化品牌 构建平安和谐矿区
- 智能基础设施设计与优化
- 《中国心力衰竭诊断和治疗指南(2024)》解读
- 中医烤灯的应用与护理
- 变频控制柜知识讲座
- 2024年3月河北定向选调生面试及参考答案全套
- 智能建造专业职业规划
评论
0/150
提交评论