




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列有关命题的说法正确的是A.“”是“”的充分不必要条件B.“x=2时,x2-3x+2=0”的否命题为真命题C.直线:,:,的充要条件是D.命题“若,则”的逆否命题为真命题2.若函数f(x)的导数为f′(x)=-sinx,则函数图像在点(4,f(4))处的切线的倾斜角为()A.90°B.0°C.锐角D.钝角3.某市交通部门为了提高某个十字路口通行效率,在此路口增加禁止调头标识(即车辆只能左转、右转、直行),则该十字路口的行车路线共有()A.24种 B.16种 C.12种 D.10种4.已知,那么“”是“且”的A.充分而不必要条件 B.充要条件C.必要而不充分条件 D.既不充分也不必要条件5.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》是我国古代数学的重要文献.现拟把这4部著作分给甲、乙、丙3位同学阅读,每人至少1本,则甲没分到《周髀算经》的分配方法共有()A.18种 B.24种 C.30种 D.36种6.在中,角的对边分别是,若,则()A.5 B. C.4 D.37.“已知函数,求证:与中至少有一个不少于.”用反证法证明这个命题时,下列假设正确的是()A.假设且B.假设且C.假设与中至多有一个不小于D.假设与中至少有一个不大于8.已知函数,则此函数的导函数A. B.C. D.9.已知双曲线的离心率为,过其右焦点作斜率为的直线,交双曲线的两条渐近线于两点(点在轴上方),则()A. B. C. D.10.已知,则等于()A.-4 B.-2 C.1 D.211.区间[0,5]上任意取一个实数x,则满足x[0,1]的概率为A. B. C. D.12.下列命题是真命题的为()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.复数其中i为虚数单位,则z的实部是________________.14.函数在点处切线方程为,则=______.15.已知复数,,其中i为虚数单位,若为纯虚数,则实数a的值为_______.16.科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为,且每次考试相互独立,则甲第3次考试才通过科目二的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,菱形的对角线与相交于点,,,点分别在,上,,交于点.将沿折到的位置,.(1)证明:;(2)求二面角的正弦值.18.(12分)已知函数.(1)讨论的单调性;(2)若,求实数的取值范围.19.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别男235151812女051010713(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)如图,直三棱柱中,且,,分别为,的中点.(1)证明:平面;(2)若直线与平面所成的角的大小为,求锐二面角的正切值.21.(12分)已知二次函数,设方程有两个实根(Ⅰ)如果,设函数的图象的对称轴为,求证:;(Ⅱ)如果,且的两实根相差为2,求实数的取值范围.22.(10分)已知函数(Ⅰ)求的单调区间;(Ⅱ)求在区间上的最值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】A选项不正确,由于可得,故“”是“”的必要不充分条件;B选项不正确,“时,”的逆命题为“当时,”,是假命题,故其否命题也为假;C选项不正确,若两直线平行,则,解得;D选项正确,角相等时函数值一定相等,原命题为真命题,故其逆否命题为真,故选:D.2、C【解析】,函数f(x)的图像在点(4,f(4))处的切线的倾斜角为锐角。3、C【解析】
根据每个路口有种行车路线,一个十字路口有个路口,利用分步乘法计数原理即可求解.【详解】每个路口有种行车路线,一个十字路口有个路口,故该十字路口行车路线共有(种)故选:C【点睛】本题考查了分布乘法计数原理,属于基础题.4、C【解析】
先利用取特殊值法判断x•y>0时,x>0且y>0不成立,再说明x>0且y>0时,x•y>0成立,即可得到结论.【详解】若x=﹣1,y=﹣1,则x•y>0,但x>0且y>0不成立,若x>0且y>0,则x•y>0一定成立,故“x•y>0”是“x>0且y>0”的必要不充分条件故选:C.【点睛】本题考查的知识点是充要条件的定义,考查了不等式的性质的应用,考查了逻辑推理能力,属于基础题.5、B【解析】分析:先不考虑限制条件,则共有种方法,若甲分到《周髀算经》,有两种情况:甲分到一本(只有《周髀算经》),甲分到2本(包括《周髀算经》),减去即可.详解:先不考虑限制条件,则共有种方法,若甲分到《周髀算经》,有两种情况:甲分到一本(只有《周髀算经》),此时共有种方法;甲分到2本(包括《周髀算经》),此时共有种方法,则分配方法共有种.点睛:本题考查了分组分配的问题,关键在于除去不符合条件的情况,属于基础题6、D【解析】
已知两边及夹角,可利用余弦定理求出.【详解】由余弦定理可得:,解得.故选D.【点睛】本题主要考查利用正余弦定理解三角形,注意根据条件选用合适的定理解决.7、B【解析】分析:因为与中至少有一个不少于的否定是且,所以选B.详解:因为与中至少有一个不少于的否定是且,故答案为:B.点睛:(1)本题主要考查反证法,意在考查学生对这些知识的掌握水平.(2)两个数中至少有一个大于等于a的否定是两个数都小于a.8、D【解析】分析:根据对应函数的求导法则得到结果即可.详解:函数,故答案为:D.点睛:这个题目考查了具体函数的求导计算,注意计算的准确性,属于基础题目.9、B【解析】
由双曲线的离心率可得a=b,求得双曲线的渐近线方程,设右焦点为(c,0),过其右焦点F作斜率为2的直线方程为y=2(x﹣c),联立渐近线方程,求得B,C的坐标,再由向量共线定理,可得所求比值.【详解】由双曲线的离心率为,可得ca,即有a=b,双曲线的渐近线方程为y=±x,设右焦点为(c,0),过其右焦点F作斜率为2的直线方程为y=2(x﹣c),由y=x和y=2(x﹣c),可得B(2c,2c),由y=﹣x和y=2(x﹣c)可得C(,),设λ,即有0﹣2c=λ(0),解得λ=1,即则1.故选:B.【点睛】本题考查双曲线的方程和性质,主要是离心率和渐近线方程,考查方程思想和运算能力,属于中档题.10、D【解析】
首先对f(x)求导,将1代入,求出f′(1)的值,化简f′(x),最后将x=3代入即可.【详解】因为f′(x)=1x+1f′(1),令x=1,可得f′(1)=1+1f′(1),∴f′(1)=﹣1,∴f′(x)=1x+1f′(1)=1x﹣4,当x=3,f′(3)=1.故选:D【点睛】本题考查导数的运用,求出f′(1)是关键,是基础题.11、A【解析】
利用几何概型求解即可.【详解】由几何概型的概率公式得满足x[0,1]的概率为.故选:A【点睛】本题主要考查几何概型的概率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.12、A【解析】试题分析:B若,则,所以错误;C.若,式子不成立.所以错误;D.若,此时式子不成立.所以错误,故选择A考点:命题真假二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】试题分析:.故答案应填:5【考点】复数概念【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如,其次要熟悉复数的相关概念,如复数的实部为,虚部为,模为,共轭为14、4【解析】分析:因为在点处的切线方程,所以,由此能求出.详解:因为在点处切线方程为,,
所以从而.
即答案为4.点睛:本题考查利用导数研究曲线上某点处的切线方程,解题时要认真审题,仔细解答,注意合理地进行等价转化.15、【解析】为纯虚数,则16、【解析】甲第3次考试才通过科目二,则前两次都未通过,第3次通过,故所求概率为.填三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1),可得,在菱形中,求出,由勾股定理的逆定理,即可证明;(2)以为原点,建立空间直角坐标系,求出坐标,进而求出平面和平面的法向量坐标,根据空间向量面面角公式,求出二面角的余弦,即可求出结论.【详解】(1)证明:∵,∴,∴.∵四边形为菱形,∴.∵,∴;又,,∴,∴,∴,∴,∴.(2)解:以为原点,分别以,,所在直线轴,建立如图所示的空间直角坐标系.,,,,,,.设平面法向量,由得,取,∴.同理可得面的法向量,设二面角的平面角为,则,∴.故二面角的正弦值为.【点睛】本题考查空间中点,线,面的位置关系,直线垂直的证明,利用空间向量法求二面角,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.18、(1)见解析;(2).【解析】
(1)先求导,再对a分和两种情况讨论,求出函数的单调性;(2)原命题等价于,对a分三种情况讨论分析得解.【详解】(1)当即时,恒成立在上单调递增当即时,当时,时,;时,在上单调递减,上单调递增综上所述:时,在上单调递增;时,在上单调递减,上单调递增(2)当时,恒成立,当时,当时,,此时无解.当时,由(1)知在上单调递减,上单调递增,整理得记.则恒成立故在上单调递增综上所述:.【点睛】本题主要考查利用导数研究函数的单调性和最值,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(1)不能;(2)①;②分布列见解析,.【解析】
(1)根据题目所给的数据可求2×2列联表即可;计算K的观测值K2,对照题目中的表格,得出统计结论.(2)由相互独立事件的概率可得男“环保达人”又有女“环保达人”的概率:P=1﹣()3﹣()3,解出X的分布列及数学期望E(X)即可;【详解】(1)由图中表格可得列联表如下:非“环保关注者”是“环保关注者”合计男104555女153045合计2575100将列联表中的数据代入公式计算得K”的观测值,所以在犯错误的概率不超过0.05的前提下,不能认为是否为“环保关注者”与性别有关.(2)视频率为概率,用户为男“环保达人”的概率为.为女“环保达人”的概率为,①抽取的3名用户中既有男“环保达人”又有女“环保达人”的概率为;②的取值为10,20,30,40.,,,,所以的分布列为10203040.【点睛】本题考查了独立性检验的应用问题,考查了概率分布列和期望,计算能力的应用问题,是中档题目.20、(1)详见解析(2)【解析】
(1)由已知条件可得是平行四边形,从而,由已知条件能证明平面,由此能证明平面;(2)以为坐标原点,,,分别为,,轴建立空间直角坐标系,不妨设,,求出面的一个法向量为,根据线面角可求出,在中求出,在即可求出结果.【详解】(1)取中点,连接,则,从而,连接,则为平行四边形,从而.∵直三棱柱中,平面,面,∴,∵,是的中点,∴,∵,∴面故平面(2)以为坐标原点,,,分别为,,轴建立空间直角坐标系,由条件:不妨设,,,,,,,,,设平面的一个法向量为,,可取为一个法向量,过作,连,则为二面角的平面角,在中,,在中,,,则【点睛】本题主要考查直线与平面垂直的证明,考查二面角的求法,解题时要认真审题,注意向量法的合理运用,属于中档题.21、(1)见解析(2)【解析】分析:(1)有转化为有两根:一根在与之间,另一根小于,利用一元二次方程的根分布可证;(2)先有,知两根同号,在分两根均为正和两根均为负两种情况的讨论,再利用两个之和与两根之积列不等式可求的取值范围.详解:(1)设,且,则由条件x1<2<x2<4得(2),又或综上:点睛:利用函数的零点求参数范围问题,通常有两种解法:一种是利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文教学评估标准心得体会
- 考研英语作文创新思路与范文
- 广告审核与广告主品牌形象维护补充协议
- 旅游广告素材版权使用许可协议
- 国际艺术品修复工作室租赁与技术转移合作框架协议
- 艺术院校钢琴教师实习指导与合同
- 苏教版一年级下册科学课程评价计划
- 明星肖像权授权及影视作品推广合作协议
- 人教版八年级数学下册教学计划与学科整合
- 房地产开发项目投标人资质审核及合规性承诺协议
- 教师听课评价记录表
- 十字头夹具设计说明书
- 物理高考最后一课课件
- 04S202 室内消火栓安装
- 电解质紊乱的心电图表现
- 2022年修改后的银行业G32表填报说明
- 巨量-信息流(初级)认证考试(重点)题库(含答案)
- 三年级硬笔书法课课件
- 佳发教育考试网上巡查系统(标准版)
- 投融资部面试题本
- 硫磺车间风险辨识表
评论
0/150
提交评论