![2023年江西高安中学数学高二下期末联考试题含解析_第1页](http://file4.renrendoc.com/view/e347b519c7c8a05679fad66f76166fdd/e347b519c7c8a05679fad66f76166fdd1.gif)
![2023年江西高安中学数学高二下期末联考试题含解析_第2页](http://file4.renrendoc.com/view/e347b519c7c8a05679fad66f76166fdd/e347b519c7c8a05679fad66f76166fdd2.gif)
![2023年江西高安中学数学高二下期末联考试题含解析_第3页](http://file4.renrendoc.com/view/e347b519c7c8a05679fad66f76166fdd/e347b519c7c8a05679fad66f76166fdd3.gif)
![2023年江西高安中学数学高二下期末联考试题含解析_第4页](http://file4.renrendoc.com/view/e347b519c7c8a05679fad66f76166fdd/e347b519c7c8a05679fad66f76166fdd4.gif)
![2023年江西高安中学数学高二下期末联考试题含解析_第5页](http://file4.renrendoc.com/view/e347b519c7c8a05679fad66f76166fdd/e347b519c7c8a05679fad66f76166fdd5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数是纯虚数(是实数,是虚数单位),则等于()A.2 B.-2 C. D.2.设地球的半径为R,在纬度为的纬线圈上有A,B两地,若这两地的纬线圈上的弧长为,则A,B两地之间的球面距离为()A. B. C. D.3.若满足约束条件,则的最大值为()A.9 B.5 C.11 D.34.运行下列程序,若输入的的值分别为,则输出的的值为A. B.C. D.5.已知离散型随机变量X的分布列如图,则常数c为()X01PA. B. C.或 D.6.设,,若,则的最小值为A. B.8 C.9 D.107.已知曲线在点处的切线的倾斜角为,则的值为()A. B. C. D.8.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.969.若函数,则()A. B. C. D.10.已知,,,,若(、均为正实数),根据以上等式,可推测、的值,则等于()A. B. C. D.11.若复数是纯虚数,则实数的值为()A.1或2 B.或2 C. D.212.已知点在抛物线C:的准线上,记C的焦点为F,则直线AF的斜率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量X服从正态分布N(3.1),且P(2≤X≤4)=0.6826,则p(X>4)=14.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有____个.15.设随机变量,随机变量,若,则_________.16.湖结冰时,一个球漂在其上,取出后(未弄破冰),冰面上留下了一个直径为24cm,深为8cm的空穴,则该球的半径为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.18.(12分)从1、2、3、4、5五个数字中任意取出无重复的3个数字.(I)可以组成多少个三位数?(II)可以组成多少个比300大的偶数?(III)从所组成的三位数中任取一个,求该数字是大于300的奇数的概率.19.(12分)如图,在四棱锥中,平面平面,,,,,,.(1)求直线与平面所成角的正弦值.(2)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.20.(12分)某疾病控制中心为了研究某种病毒的抗体,将这种病毒感染源放人含40个小白鼠的封闭容器中进行感染,未感染病毒的小白鼠说明已经产生了抗体,已知小白鼠对这种病毒产生抗体的概率为.现对40个小白鼠进行抽血化验,为了检验出所有产生该种病毒抗体的小白鼠,设计了下面的检测方案:按(,且是40的约数)个小白鼠平均分组,并将抽到的同组的个小白鼠每个抽取的一半血混合在一起化验,若发现该病毒抗体,则对该组的个小白鼠抽取的另一半血逐一化验,记为某组中含有抗体的小白鼠的个数.(1)若,求的分布列和数学期望.(2)为减少化验次数的期望值,试确定的大小.(参考数据:,,,,)21.(12分)国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,并说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.(参考数据:,)22.(10分)2019年高考前夕某地天空出现了一朵点赞云,为了将这朵祥云送给马上升高三的各位学子,现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,在直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求曲线的直角坐标方程:(2)点为曲线上任意一点,点为曲线上任意一点,求的最小值。
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
利用复数的运算法则进行化简,然后再利用纯虚数的定义即可得出.【详解】∵复数(1+ai)(1﹣i)=1+a+(1a﹣1)i是纯虚数,∴,解得a=﹣1.故选B.【点睛】本题考查了复数的乘法运算、纯虚数的定义,属于基础题.2、D【解析】
根据纬线圈上的弧长为求出A,B两地间的径度差,即可得出答案。【详解】设球心为O,纬度为的纬线圈的圆心为O´,则∠O´AO=,∴O´A=OAcos∠O´AO=Rcos,设A,B两地间的径度差的弧度数为,则Rcos=,∴=,即A,B两地是⊙O´的一条直径的两端点,∴∠AOB=,∴A,B两地之间的球面距离为.答案:D.【点睛】本题涉及到了地理相关的经纬度概念。学生需理解其基本概念,将题干所述信息转换为数学相关知识求解。3、A【解析】
先作出不等式组所表示的可行域,然后平移直线,观察直线在轴上的截距取最大值时对应的最优解,将最优解代入函数即可得出答案。【详解】作出不等式组所表示的可行域如下图所示:联立,得,点的坐标为,平移直线,当该直线经过点,它在轴上的截距取最大值,此时,取最大值,即,故选:A.【点睛】本题考查线性规划问题,考查线性目标函数的最值问题,解题思路就是作出可行域,平移直线观察在坐标轴上的截距变化寻找最优解,是常考题型,属于中等题。4、B【解析】分析:按照程序框图的流程逐一写出即可详解:第一步:第二步:第三步:第四步:最后:输出.,故选B.点睛:程序框图的题学生只需按照程序框图的意思列举前面有限步出来,观察规律,得出所求量与步数之间的关系式.5、A【解析】
根据所给的随机变量的分布列写出两点分步的随机变量的概率要满足的条件,一是两个概率都不小于0,二是两个概率之和是1,解出符合题意的c的值.【详解】由随机变量的分布列知,,,,∴,故选A.【点睛】本题主要考查分布列的应用,求离散型随机变量的分布列和期望,属于基础题.6、C【解析】
根据题意可知,利用“1”的代换,将化为,展开再利用基本不等式,即可求解出答案。【详解】由题意知,,,且,则当且仅当时,等号成立,的最小值为9,故答案选C。【点睛】本题主要考查了利用基本不等式的性质求最值的问题,若不满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造“1”的代换等。7、D【解析】
利用导数求出,由可求出的值.【详解】,,由题意可得,因此,,故选D.【点睛】本题考查导数的几何意义,考查导数的运算、直线的倾斜角和斜率之间的关系,意在考查函数的切线斜率与导数之间的关系,考查计算能力,属于中等题.8、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.9、A【解析】
首先计算,然后再计算的值.【详解】,.故选A.【点睛】本题考查了分段函数求值,属于计算题型.10、B【解析】
根据前面几个等式归纳出一个关于的等式,再令可得出和的值,由此可计算出的值.【详解】,,,由上可归纳出,当时,则有,,,因此,,故选B.【点睛】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.11、C【解析】
根据纯虚数的定义可得2m2﹣3m﹣2=0且m2﹣3m+2≠0然后求解.【详解】∵复数z=(2m2﹣3m﹣2)+(m2﹣3m+2)i是纯虚数∴2m2﹣3m﹣2=0且m2﹣3m+2≠0∴m故选C.【点睛】本题主要考查了纯虚数的概念,解题的关键是要注意m2﹣3m+2≠0,属于基础题.12、C【解析】试题分析:由已知得,抛物线的准线方程为,且过点,故,则,,则直线AF的斜率,选C.考点:1、抛物线的标准方程和简单几何性质;2、直线的斜率.二、填空题:本题共4小题,每小题5分,共20分。13、0.1587【解析】
P(3≤X≤4)=12P(2≤X≤4)=0.3413,
观察如图可得,
∴P(X>4)=0.5-P(3≤X≤4)=0.5-0.3413
=0.1587考点:正态分布点评:随机变量~N(μ,δ2)中,14、14【解析】由题意,得必有,,则具体的排法列表如下:由图可知,不同的“规范01数列”共有14个.故答案为14.15、6【解析】因,故,即,则,又随机变量,所以,,应填答案。16、13cm【解析】
设球半径为R,则,解得,故答案为13.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)单调递增区间是,单调递减区间是.【解析】分析:(1)换元法,,进而得到表达式;(2),结合图像得到单调区间.详解:(Ⅰ)令,,,即函数解析式为.(Ⅱ)由(Ⅰ)知,结合函数的图像得到,函数的单调递增区间是,函数的单调递减区间是.点睛:这个题目考查了函数的解析式的求法,求函数解析式一定注意函数的定义域;常见方法有:换元法,构造方程组法,配方法等;考查了绝对值函数的性质,一般先去掉绝对值,结合图像研究函数性质.18、(1).(2)比三百大的数字有15个.(3).【解析】分析:(1)根据乘法计数原理可知可组成个个;(2)第一类:以2结尾百位有3种选择,十位有3种选择,则有9个,第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个;(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,根据古典概型的计算公式得到结果即可.详解:(1)百位数字有5种选择,十位数字有4种选择,各位数字有3种选择,根据乘法计数原理可知可组成个三位数。(2)各位数字上有两类:第一类:以2结尾百位有3种选择,十位有3种选择。则有9个数字。第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个数字。则比三百大的数字有15个(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,则该数字是大于300的奇数的概率是.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.19、(Ⅰ);(Ⅱ).【解析】分析:(Ⅰ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),进一步求出向量的坐标,再求出平面PCD的法向量,设PB与平面PCD的夹角为θ,由求得直线PB与平面PCD所成角的正弦值;(Ⅱ)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由可得M(0,1﹣λ,λ),,由BM∥平面PCD,可得,由此列式求得当时,M点即为所求.详解:(1)取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.又因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.以O为坐标原点,建立空间直角坐标系如图:则P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),则,,设为平面PCD的法向量,则由,得,则.设PB与平面PCD的夹角为θ,则=;(2)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由(Ⅱ)知,A(0,1,0),P(0,0,1),,B(1,1,0),,则有,可得M(0,1﹣λ,λ),∴,∵BM∥平面PCD,为平面PCD的法向量,∴,即,解得.综上,存在点M,即当时,M点即为所求.点睛:点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.20、(1)分布列见解析,1;(2)4【解析】
(1)由题意可得,随机变量的分布满足二项分布,所以直接利用二项分布公式即可得的分布列和数学期望;(2)根据平均分组得到的可能取值,再根据二项分布可得出化验次数的期望值进行比较大小,从而可得出此时的值.【详解】(1)当时,,,.其分布列为012345.(2)根据题意,当时,,对于某组个小白鼠,化验次数的可能取值为1,,,,∴,∴40个小白鼠化验总次数的期望为,,,,,,,∴按4个小白鼠一组化验可使化验次数的期望值最小.【点睛】本题考查了二项分布求分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全新技师合同协议书下载
- 国际贸易实务3-合同条款
- 聘请飞行员劳动合同
- 联合国国际货物销售合同公约
- 招标投标买卖合同范本
- 有关加工合同模板
- 食材供应合同范本
- 茶叶买卖合同
- 会议室场地租赁合同范本
- 部门承包合同
- 《实验诊断学》课件
- 小学网管的工作总结
- 诊所校验现场审核表
- 派出所上户口委托书
- 医院6s管理成果汇报护理课件
- SYT 0447-2014《 埋地钢制管道环氧煤沥青防腐层技术标准》
- 第19章 一次函数 单元整体教学设计 【 学情分析指导 】 人教版八年级数学下册
- 电梯结构与原理-第2版-全套课件
- IEC-62368-1-差异分享解读
- 2022-2023学年广东省佛山市顺德区高三(下)模拟英语试卷
- 节后复工培训内容五篇
评论
0/150
提交评论