平均电流控制_第1页
平均电流控制_第2页
平均电流控制_第3页
平均电流控制_第4页
平均电流控制_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

千里之行,始于足下让知识带有温度。第第2页/共2页精品文档推荐平均电流控制

流控制的电感电流波形图。其中Ue是电压放大器输出的电流设定值,ΔIo是扰动电流,m1、m2分离是电感电流的升高沿及下降沿斜率。从图中可以看出当D50%时扰动电流引起的电流误差ΔI1变大。所以峰值电流模式控制在D>50%时电路工作不稳定,需给PWM比较器加坡度补偿以稳定电路。对于Buck电路,补偿坡度是Uo/L,因为输出电压恒定,所以补偿值便于计算并恒定,但是补偿电路还

是增强了囫囵电路的复杂性;对于Boost电路,补偿坡度是(UinUo)/L,由

于输入电压随电网波动而变化,所以补偿值不恒定,这使设计的固定补偿网络,无数时候会发生过补偿,降低了电路的性能并导致了波形畸变。而平均电流模式控制用晶振幅度来提供足够的补偿坡度,而无须外加补偿电路。

3)具有尖峰值/平均值误差如图5所示,峰值电流控制模式中随着占空比D1、D2的不同,电感电流的平均值I1、I2也不同。虽然可以通过斜坡补偿来获得不同占空比下全都的电感电流,如图6所示,但这也增强了电路的复杂性。

电流模式控制的实质是使平均电感电流尾随误差电压Ue设定的值,即可将电感用一个恒流源来代替,从而使囫囵系统由二阶降为一阶。但峰值电流法电感电流的平均值和峰值间存在差值,在BUCK电路中因为电感电流的纹波相对电感电流的平均值很小,并且存在电压外环的校正作

用,所以峰值和平均值的这种误差可以忽视;在BOOST电路中,峰值要尾随输入电网的正弦波,所以和平均值间的误差很大,在低电流,尤其是电流不延续时,如每半周期输入电流过零时,这种误差最大,它会使输入电流波形畸变。这时就需要一个大电感来使电感电流的纹波变小,但这将使电感电流的坡度变窄,降低抗干扰能力。

4)产生次谐波振荡内部电流环的增益尖峰是电流模式控制的一个重要问题。这种增益尖峰发生在1/2开关频率处,使相移超出范围,导致电路工作不稳定,使电压环进入次谐波振荡。导致在延续固定的驱动脉冲时,输出占空比却在变化,如图7所示。这时也需斜坡补偿来抑制次谐波振荡。

2UC3854BN控制电路设计

我们设计的Po=1200W功率因数校正电路,采纳了Boost电路的拓扑、平均电流法的控制电路及UC3854BN的控制芯片。电路参数如下:输入电压:Uin=(75%~125%)220V=165~275V

开关频率:fs=80kHz

效率:η>0.95

检测变压器变比:1:100

输出电压:Uo=DC410V

功率因数:PF>0.993

电感:600μH

检测电阻:15Ω

2.1功率部分设计

1)电感设计

输入电压最小时电感电流最大,所以计算电感时选取该时刻为计算点。电感的大小还和开关中允许的纹波有关,允许的纹波含量越多,电感值越小,普通选纹波含量为线电流峰值的20%。最大的线电流峰值ILIN(PK)发生在最小的输入电压时,D为电流峰值时的占空比。

2)输出电容挑选

输出电容的大小和开关频率纹波电流、次谐波电流、输出直流电压、输出纹波电压、功率及输出保持时光有关。电容电流等于开关频率纹波电流和100Hz谐波电流之和。当考虑保持时光时,输出电容Co的计算公式为

式中:tH——电容的保持时光,指输入关断后,输出电压在一定范围内保存的时光,普通为15~50μs;

Uomin——负荷最小工作电压。

Co普通按1~2μF/W选取,若不考虑保存时光,只考虑纹波电流、纹波电压,则Co按0.2μF/W选取,在此选Co=1200μF。

3)功率MOS管和二极管的挑选

主MOS管挑选IRFP460,UDSS=500V,RDS(ON)=0.27Ω,ID=20A,COSS=870pF。升压二极管挑选高频迅速恢复二极管APT30S60B,30A/600V,反向恢复时光25ns(要求小于75ns)。

UC3854BN的驱动信号被TC4424放大后接一个10Ω的电阻到开关管的栅极。

4)乘法器/除法器电路

UC3854的核心是一乘法器/除法器电路,如图8所示。该电路的作用是按照整流后的正弦半波电压,产生一个正弦电流标准波形IMO,实际电流波形就跟踪该波形,即相当于跟踪输入电压的正弦波形,所以能取得高功率因数。其设计过程如下:

——挑选Uff分压电阻(Uff设定范围1.5~4.7V,工作范围0~5.5V)

设低进线电压(165V其平均值为165×0.9)时Uff=1.5V,则有

165×0.9/1.5=99:1

设分压电阻Rff3为10kΩ,则

RTOTAL=10×99=990kΩ,设Rff2=100kΩ,则Rff1=900-100-10=880kΩ,

Rff3、Rff2分离并联滤波电容Cff2、Cff1构成二阶滤波器,滤波极点定为

15Hz(fp=15Hz),滤波极点是按照如下的过程确定的:

因为Uin是二倍频(100Hz)正弦半波,而Uff的大小将直接影响乘法器输出的100Hz正弦半波的大小,并使该正弦半波包含4次谐波重量。因此要求Uff尽量为平滑的直流量,同时考虑到乘法器对输入电压幅值的响应速度要快,为此要求该二阶低通滤波器的转折频率不能太低,并且为了获得最大带宽,要求两阶滤波器的极点在同一频率。当因为Uff失真引起的谐波失真占总谐波失真的百分比被限制在1.5%以下时,又因为输入市电经桥式整流后产生的二次谐波失真为66.7%,因此该二阶低通滤波器的增益为:1.5%/66.7%=0.025

平分给两级低通滤波器的增益每级为0.15。按照增益与转折频率的关系:增益AV=fc/fin,已知输入信号的频率fin=2×50=100Hz,所以转折频率fc=15Hz,由此计算滤波电容的大小

——计算电阻RM0

最低进线电压时IAC=100μA且乘法器输出为1V,最低进线电压最大负载时,UEA(电压误差放大器的输出)为最大值6V,因此按照乘法器输出公式

由于RM0上的电压是乘法器的输出,RC极点频率应大于100Hz,所以RM0并联噪声抑制电容C12为

C12≤1/(2πfpRMO)=1/(2π×100×4.5×103)≈350nF

试验挑选C12为1nF。

4)电流环设计

为了稳定运行,必需举行电流环相位补偿。电流环补偿后在开关频率附近提供平稳增益。在低频的零点响应提供高增益完成平均电流控制工作。在开关频率附近误差放大器的增益要协作电感电流的下降沿,当开关管关断时,则应协作晶振的坡度。

本设计开关频率fs=80kHz,单位增益交越频率fc应为14kHz(1/6开关频率),但本电流环的主要工作是跟踪线电流,10kHz的带宽是合适的值,因此将交越频率定在fc=10kHz。电流环的零点必需设置在交越频率上,或低于交越频率处。如设置在交越频率上,相位裕度有45°,低于交越频率相位裕度更大点。45°相位裕度的系统工作稳定、过冲低、干扰小。所以将零点频率fz置在交越频率处(fz=10kHz)。当极点高于开关频率的一半时,极点不会影响控制环的频率响应。为了削减对噪声的敏感性,极点通常设置在开关频率附近。本设计设置极点频率fp在开关频率处(fP=80kHz)。简略计算过程如下:

零点处功率部分的增益Gid(s)为

=0.26

由于交越频率处囫囵电流环为单位增益,即GCA=1。而电流环增益和功率部分增益之积为1,则有

5)电压环设计

Boost电路输出部分的低频模式是电流源驱动电容的一阶电路,功率部

分和电流反馈环组成该电流源,输出电容组成该电容,该模式具有-

20db/10倍频的增益特性。为了工作稳定,电压环也必需补偿,比起稳定性,功率因数校正电路电压环更需要的是保持输入线电流畸变小。电压环的带宽必需设计为足够低以衰减输出电容上的工频二次谐波;电压误差放大器也必需有足够的相位裕度以在相位上跟踪输入电流,使功率因数提高。

电压环部分的设计从计算输出电容上允许的二次谐波电压开头,再计算电压放大器允许的输出二次谐波,及由此算出电压放大器的二次谐波增益,由该增益值可以算出电压环的补偿电容。功率部分的增益和电压环的增益组成囫囵电压环的增益,囫囵电压环的增益为1算出交越频率。再由交越频率算出补偿网络的电阻。计算过程如下:

输出电容的纹波电压UOPK为

3试验结果

按照以上设计所得到的试验波形如图13、图14所示。可以看

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论