2023届西藏省重点中学数学高二下期末经典模拟试题含解析_第1页
2023届西藏省重点中学数学高二下期末经典模拟试题含解析_第2页
2023届西藏省重点中学数学高二下期末经典模拟试题含解析_第3页
2023届西藏省重点中学数学高二下期末经典模拟试题含解析_第4页
2023届西藏省重点中学数学高二下期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角的对边分别是,若,则()A.5 B. C.4 D.32.给出下列三个命题:①“若,则”为假命题;②若为真命题,则,均为真命题;③命题,则.其中正确的个数是()A.0 B.1 C.2 D.33.已知函数,若,则实数的取值范围是()A. B.C. D.4.设,是抛物线上两点,抛物线的准线与轴交于点,已知弦的中点的横坐标为3,记直线和的斜率分别为和,则的最小值为()A. B.2 C. D.15.已知集合,,下列结论成立的是A. B. C. D.6.已知直线与圆交于两点,且(其中为坐标原点),则实数的值为A. B. C.或 D.或7.一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件为“第一次取到的是一等品”,事件为“第二次取到的是一等品”.则()A. B. C. D.8.函数在上有唯一零点,则的取值范围为A. B. C. D.9.若点P在抛物线上,点Q(0,3),则|PQ|的最小值是()A. B. C. D.10.已知,,且,则向量在方向上的正射影的数量为A.1 B.C. D.11.用反证法证明命题“若,则”时,正确的反设为()A.x≤﹣1 B.x≥﹣1 C.x2﹣2x﹣3≤0 D.x2﹣2x﹣3≥012.某中学高二年级的一个研究性学习小组拟完成下列两项调查:①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;②从本年级12名体育特长生中随机选出5人调查其学习负担情况;则该研究性学习小组宜采用的抽样方法分别是()A.①用系统抽样,②用简单随机抽样 B.①用系统抽样,②用分层抽样C.①用分层抽样,②用系统抽样 D.①用分层抽样,②用简单随机抽样二、填空题:本题共4小题,每小题5分,共20分。13.若复数(为虚数单位),则______.14.已知定点和曲线上的动点,则线段的中点的轨迹方程为________15.若复数满足,则__________.16.连续抛掷同一颗骰子3次,则3次掷得的点数之和为9的概率是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年来,空气质量成为人们越来越关注的话题,空气质量指数(,简称)是定量描述空气质量状况的指数.环保部门记录了某地区7天的空气质量指数,其中,有4天空气质量为优,有2天空气质量为良,有1天空气质量为轻度污染.现工作人员从这7天中随机抽取3天进行某项研究.(I)求抽取的3天中至少有一天空气质量为良的概率;(Ⅱ)用表示抽取的3天中空气质量为优的天数,求随机变量的分布列和数学期望.18.(12分)已知函数fx(1)当a=2,求函数fx(2)若函数fx19.(12分)已知命题:函数对任意均有;命题在区间上恒成立.(1)如果命题为真命题,求实数的值或取值范围;(2)命题“”为真命题,“”为假命题,求实数的取值范围.20.(12分)已知函数,(1)求在区间上的极小值和极大值;(2)求在(为自然对数的底数)上的最大值.21.(12分)在有阳光时,一根长为3米的旗轩垂直于水平地面,它的影长为米,同时将一个半径为3米的球放在这块水平地面上,如图所示,求球的阴影部分的面积(结果用无理数表示).22.(10分)如图,在矩形中,,,是的中点,以为折痕将向上折起,变为,且平面平面.(1)求证:;(2)求二面角的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

已知两边及夹角,可利用余弦定理求出.【详解】由余弦定理可得:,解得.故选D.【点睛】本题主要考查利用正余弦定理解三角形,注意根据条件选用合适的定理解决.2、B【解析】试题分析:①若,则且,所以①正确;②若为真命题,则,应至少有一个是真命题,所以②错;③正确.考点:1.四种命题;2.命题的否定.3、A【解析】

代入特殊值对选项进行验证排除,由此得出正确选项.【详解】若,符合题意,由此排除C,D两个选项.若,则不符合题意,排除B选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.4、D【解析】

设,运用点差法和直线的斜率公式和中点坐标公式,可得,再由基本不等式可得所求最小值.【详解】设,可得,相减可得,可得,又由,所以,则,当且仅当时取等号,即的最小值为.故选:D.【点睛】本题主要考查了抛物线的方程和性质,考查直线的斜率公式和点差法的运用,以及中点坐标公式,考查方程思想和运算能力,属于基础题.5、D【解析】由已知得,,则,故选D.6、C【解析】分析:利用OA⊥OB,OA=OB,可得出三角形AOB为等腰直角三角形,由圆的标准方程得到圆心坐标与半径R,可得出AB,求出AB的长,圆心到直线y=﹣x+a的距离为AB的一半,利用点到直线的距离公式列出关于a的方程,求出方程的解即可得到实数a的值.详解:∵OA⊥OB,OA=OB,∴△AOB为等腰直角三角形,又圆心坐标为(0,0),半径R=1,∴AB=.∴圆心到直线y=﹣x+a的距离d=AB==,∴|a|=1,∴a=±1.故答案为C.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理和垂径定理.7、C【解析】

利用古典概型概率公式计算出和,然后利用条件概率公式可计算出结果。【详解】事件前两次取到的都是一等品,由古典概型的概率公式得,由古典概型的概率公式得,由条件概率公式得,故选:C.【点睛】本题考查条件概率公式求概率,解题时要弄清楚各事件之间的关系,关键在于灵活利用条件概率公式计算,考查运算求解能力,属于中等题。8、C【解析】分析:函数有唯一零点,则即可详解:函数为单调函数,且在上有唯一零点,故,解得故选点睛:函数为一次函数其单调性一致,不用分类讨论,为满足有唯一零点列出关于参量的不等式即可求解。9、B【解析】试题分析:如图所示,设,其中,则,故选B.考点:抛物线.10、D【解析】

由与、可得出,向量在方向上的正射影的数量=【详解】向量在方向上的正射影的数量=【点睛】本题考查两向量垂直,其数量积等于0.向量在方向上的正射影的数量=.11、C【解析】

根据反证法的要求,反设时条件不变,结论设为相反,从而得到答案.【详解】命题“若,则”,要用反证法证明,则其反设需满足条件不变,结论设为相反,所以正确的反设为,故选C项.【点睛】本题考查利用反证法证明时,反设应如何写,属于简单题.12、D【解析】

①总体由差异明显的几部分构成时,应选用分层抽样;②总体个体数有限、逐个抽取、不放回、每个个体被抽到的可能性均等,应选用简单随机抽样;∴选D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

把复数z=1-2i及它的共轭复数代入,将其化简为a+bi(a,b∈R)的形式,即可.【详解】复数(为虚数单位),则,,故答案为:6−2i.【点睛】本题考查复数的基本概念,复数基本运算,属于基础题.14、【解析】

通过中点坐标公式,把点的坐标转移到上,把点的坐标代入曲线方程,整理可得点的轨迹方程。【详解】设点的坐标为,点,因为点是线段的中点,所以解得,把点的坐标代入曲线方程可得,整理得,所以点的轨迹方程为故答案为:【点睛】本题考查中点坐标公式,相关点法求轨迹方程的方法,属于中档题。15、1【解析】

设,,代入方程利用复数相等即可求解,求模即可.【详解】设,,则,整理得:解得,所以,故答案为1【点睛】本题主要考查了复数的概念,复数的模,复数方程,属于中档题.16、;【解析】

利用分步计数原理,连续拋掷同一颗骰子3次,则总共有:6×6×6=216种情况,再列出满足条件的所有基本事件,利用古典概型的计算公式计算可得概率.【详解】每一次拋掷骰子都有1,2,3,4,5,6,六种情况,由分步计数原理:连续抛掷同一颗骰子3次,则总共有:6×6×6=216种情况,则3次掷得的点数之和为9的基本事件为25种情况即:(1,2,6),(1,3,5),(1,4,4),(1,5,3),(1,6,2),(2,1,6),(2,2,5),(2,3,4),(2,4,3),(2,5,2),(2,6,1),(3,1,5),(3,2,4),(3,3,3),(3,4,2),(3,5,1),(4,1,4),(4,2,3),(4,3,2),(4,4,1),(5,1,3),(5,2,2),(5,3,1),(6,1,2),(6,2,1),共25个基本事件,所以.【点睛】本题考查分步计数原理和古典概型概率计算,计数过程中如果前两个数固定,则第三个数也相应固定.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);(Ⅱ).【解析】

(Ⅰ)可先计算对立事件“抽取的3天空气质量都不为良”的概率,再利用相关公式即得答案;(Ⅱ)找出随机变量的所有可能取值,分别计算相关概率,从而列出分布列计算数学期望.【详解】(Ⅰ)解:设事件为“抽取的3天中至少有一天空气质量为良”,事件的对立事件为“抽取的3天空气质量都不为良”,从7天中随机抽取3天共有种不同的选法,抽取的3天空气质量都不为良共有种不同的选法,则,所以,事件发生的概率为.(Ⅱ)解:随机变量的所有可能取值为0,1,2,3.,所以,随机变量的分布列为0123随机变量的数学期望.【点睛】本题主要考查对立事件的相关概念与计算,超几何分布的分布列与数学期望,意在考查学生的分析能力,逻辑推理能力和计算能力.18、(1)见解析;(2)0,2【解析】

(1)代入a的值,求出函数的单调区间,从而求出函数的极值即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合函数的零点个数确定a的范围即可.【详解】(1)当a=2时,f'x=2x-列表:x011f—0+f↘极小值f↗所以,当x=1时,fx有极小值f1=(2)①因为fx=x2-a当a≤0时,f'所以fx在0,+∞当a>0时,由f'x>0得x>a2,由所以fx在0,a2上单调递减,所以fx在x1°当a=2时,fx在0,1上单调递减,fx2°当0<a<2时,a2<1,故fa注意到fx=x取x0=e-1设gx=xlnx,g列表x011g—0+g↘极小值g↗所以,当x=1e,gx所以xlnx>-1e>-1因此,根据零点存在性定理知,在e-1a又x=1也是fx的一个零点,则f3°当a>2时,a2>1,故fa注意到lnx<x,取x则f>a+1因此,根据零点存在性定理知,在a2,a+1上又x=1也是fx的一个零点,则f综上所述,实数a的取值范围是0,2∪【点睛】本题考查了函数的单调性,最值及零点问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.19、(1)(2)【解析】

(1)根据为真命题先判断出的单调性,然后利用分析的取值或取值范围;(2)先分别求解出为真时的取值范围,然后根据含逻辑联结词的复合命题的真假判断出的真假,从而求解出的取值范围.【详解】(1)在上单调递增则对恒成立∴;(2)在区间上恒成立,即在区间上恒成立,命题为真命题:即,所以,由命题“”为真命题,“”为假命题知一真一假若真假,若假真,则综上所述,.【点睛】本题考查利用导数研究函数的单调性以及根据含逻辑联结词的复合命题真假求解参数范围,其中涉及到用分离参数法解决恒成立问题,属于综合型问题,难度一般.(1)注意定义法判断函数单调性的转换:在定义域内单调递增,在定义域内单调递减;(2)根据含逻辑联结词的复合命题的真假求解参数范围时,注意先判断各命题的真假.20、(1)极小值为,极大值为.(2)答案不唯一,具体见解析【解析】

(1)对三次函数进行求导,解导数不等式,画出表格,从而得到极值;(2)由(1)知函数的性质,再对进行分类讨论,求在的性质,比较两段的最大值,进而得到函数的最大值.【详解】(1)当时,,令,解得或.当x变化时,,的变化情况如下表:x0-0+0-递减极小值递增极大值递减故当时,函数取得极小值为,当时,函数取值极大值为.(2)①当时,由(1)知,函数在和上单调递减,在上单调递增.因为,,,所以在上的值大值为2.②当时,,当时,;当时,在上单调递增,则在上的最大值为.故当时,在上最大值为;当时,在上的最大值为2.【点睛】本题三次函数、对数函数为背景,考查利用导数求三次函数的极值,考查分类讨论思想的应用.21、6π(米2)【解析】

先求出射影角,再由射影比例求球的阴影部分的面积。【详解】解:由题意知,光线与地面成60°角,设球的阴影部分面积为S,垂直于光线的大圆面积为S′,则Scos30°=S′,并且S′=9π,所以S=6π(米2)【点睛】先求出射影角,再由射影比例求球的阴影部分的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论