版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,均为正实数,则,,的值()A.都大于1 B.都小于1C.至多有一个不小于1 D.至少有一个不小于12.若集合,函数的定义域为集合B,则A∩B等于()A.(0,1)B.[0,1)C.(1,2)D.[1,2)3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的分别为12,4,则输出的等于()A.4 B.5 C.6 D.74.一个盒子里有6支好晶体管,5支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管时,则第二支也是好晶体管的概率为()A.23B.512C.75.在二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;在三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=4A.4πr4 B.3πr46.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是()A.0.45 B.0.6 C.0.65 D.0.757.如图,在正方形中,点E,F分别为边,的中点,将、分别沿、所在的直线进行翻折,在翻折的过程中,下列说法错误是()A.存在某个位置,使得直线与直线所成的角为B.存在某个位置,使得直线与直线所成的角为C.A、C两点都不可能重合D.存在某个位置,使得直线垂直于直线8.()A.1 B. C. D.9.已知向量,,若与垂直,则()A.-1 B.1 C.土1 D.010.准线为的抛物线标准方程是()A. B. C. D.11.下列命题中,真命题是()A. B.C.的充要条件是 D.是的充分条件12.已知双曲线:的左、右焦点分别为,,以线段为直径的圆与双曲线的渐近线在第一象限的交点为,且满足,则的离心率满足()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.,若,则的最大值为______.14.设和是关于的方程的两个虚数根,若、、在复平面上对应的点构成直角三角形,那么实数_______________.15.已知实数且,函数在上单调递增,则实数的取值范围构成的集合为__________.16.f(x)=2sinωx(0<ω<1),在区间上的最大值是,则ω=________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,底面,四边形是正方形,.(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.18.(12分)如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.19.(12分)已知等比数列的各项均为正数,且,,数列的前项和为.(Ⅰ)求;(Ⅱ)求数列的前项和.20.(12分)选修4-4:坐标系与参数方程:在直角坐标系中,曲线(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程;(2)已知点,直线的极坐标方程为,它与曲线的交点为,,与曲线的交点为,求的面积.21.(12分)某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:22.(10分)将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为,第二次出的点数为,且已知关于、的方程组.(1)求此方程组有解的概率;(2)若记此方程组的解为,求且的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:对每一个选项逐一判断得解.详解:对于选项A,如果a=1,b=2,则,所以选项A是错误的.对于选项B,如果a=2,b=1,则,所以选项B是错误的.对于选项C,如果a=4,b=2,c=1,则,所以选项C是错误的.对于选项D,假设,则,显然二者矛盾,所以假设不成立,所以选项D是正确的.故答案为:D.点睛:(1)本题主要考查反证法,意在考查学生对该知识的掌握水平.(2)三个数至少有一个不小于1的否定是2、D【解析】试题分析:,,所以。考点:1.函数的定义域;2.集合的运算。3、A【解析】
分析:本题给只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误).详解:模拟程序的运行,可得,不满足结束循环的条件,执行循环体,;不满足结束循环的条件,执行循环体,;不满足结束循环的条件,执行循环体,;满足结束循环的条件,退出循环,输出的值为,故选A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4、D【解析】试题分析:由题意,知取出一好晶体管后,盒子里还有5只好晶体管,4支坏晶体管,所以若已知第一支是好晶体管,则第二支也是好晶体管的概率为59考点:等可能事件的概率.5、B【解析】
根据所给的示例及类比推理的规则得出,高维度的测度的导数是低一维的测度,从而得到W'【详解】由题知,S'=l,V'=S所以W=3πr4,故选【点睛】本题主要考查学生的归纳和类比推理能力。6、D【解析】根据题意,记甲击中目标为事件,乙击中目标为事件,目标被击中为事件,则.∴目标是被甲击中的概率是故选D.7、D【解析】
在A中,可找到当时,直线AF与直线CE垂直;在B中,由选项A可得线AF与直线CE所成的角可以从到,自然可取到;在C中,若A与C重合,则,推出矛盾;在D中,若AB⊥CD,可推出则,矛盾.【详解】解:将DE平移与BF重合,如图:在A中,若,又,则面,则,即当时,直线AF与直线CE垂直,故A正确;
在B中,由选项A可得线AF与直线CE所成的角可以从到,必然会存在某个位置,使得直线AF与直线CE所成的角为60°,故B正确;在C中,若A与C重合,则,不符合题意,则A与C恒不重合,故C正确;
在D中,,又CB⊥CD,则CD⊥面ACB,所以AC⊥CD,即,又,则,矛盾,故D不成立;
故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.8、D【解析】
根据微积分基本原理计算得到答案.【详解】.故选:.【点睛】本题考查了定积分,意在考查学生的计算能力.9、C【解析】分析:首先根据题中所给的向量垂直的条件,得到向量数量积等于零,从而得到,之后利用相应的公式得到所满足的条件,从而求得结果.详解:根据与垂直,可得,即,所以有,解得,故选C.点睛:该题考查的是有关向量的问题,涉及到的知识点有用向量的数量积等于零来体现向量垂直,再者就是向量的平方和向量模的平方是相等的,最后列出相应的等量关系式求得结果.10、A【解析】准线为的抛物线标准方程是,选A.11、D【解析】A:根据指数函数的性质可知恒成立,所以A错误.
B:当时,,所以B错误.
C:若时,满足,但不成立,所以C错误.D:则,由充分必要条件的定义,,是的充分条件,则D正确.
故选D.12、D【解析】分析:联立圆与渐近线方程,求得M的坐标,由,得点在双曲线右支上,代入双曲线方程化简即可求.详解:由,得,即,由,,即由,化简得,即,故选D.点睛:本题考查双曲线的简单几何性质,点到直线的距离公式,考查计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
均值不等式推广;【详解】【点睛】熟练掌握。14、【解析】
由题意,可设α=a+bi,则由实系数一元二次方程虚根成对定理可得β=a﹣bi,且m与n为实数,b≠1.由根与系数的关系得到a,b的关系,由α,β,1对应点构成直角三角形,求得到实数m的值【详解】设α=a+bi,则由实系数一元二次方程虚根成对定理可得β=a﹣bi,且m与n为实数,n≠1.由根与系数的关系可得α+β=2a=﹣2,α•β=a2+b2=m.∴m>1.∴a=﹣1,m=b2+1,∵复平面上α,β,1对应点构成直角三角形,∴α,β在复平面对应的点分别为A,B,则OA⊥OB,所以b2=1,所以m=1+1=2;,故答案为:2【点睛】本题主要考查实系数一元二次方程虚根成对定理、根与系数的关系,三角形是直角三角形是解题的关键,属于基础题.15、.【解析】分析:先确定各段单调递增,再考虑结合点处也单调递增,解得实数的取值范围.详解:因为在上单调递增,所以因此实数的取值范围构成的集合为.点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.16、【解析】
函数f(x)的周期T=,因此f(x)=2sinωx在上是增函数,∵0<ω<1,∴是的子集,∴f(x)在上是增函数,∴=,即2sin=,∴ω=,∴ω=,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)直线与平面所成角的余弦值为.【解析】分析:(1)先根据线面平行判定定理得平面,平面.,再根据面面平行判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面的一个法向量,利用向量数量积求得向量夹角,最后根据线面角与向量夹角互余关系得结果.详解:(Ⅰ)因为,平面,平面,所以平面.同理可得,平面.又,所以平面平面.(Ⅱ)(向量法)以为坐标原点,所在的直线分别为轴,轴,轴建立如下图所示的空间直角坐标系,由已知得,点,,,.所以,.易证平面,则平面的一个法向量为.设直线与平面所成角为,则。则.即直线与平面所成角的余弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.18、(Ⅰ)见解析;(Ⅱ).【解析】分析:(1)先证明,,再证明平面.(2)利用向量方法求直线与平面所成角的正弦值.详解:(Ⅰ)因为,平面平面,,所以平面,所以,又因为,所以平面;(Ⅱ)取的中点,连结,,因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系,由题意得,,,,,.设平面的法向量为,则,即,令,则,.所以.又,所以.所以直线与平面所成角的正弦值为.点睛:(1)本题主要考查线面位置关系的证明,考查直线和平面所成的角的求法,意在考查学生对这些知识的掌握水平和空间想象转化能力.(2)直线和平面所成的角的求法方法一:(几何法)找作(定义法)证(定义)指求(解三角形),其关键是找到直线在,平面内的射影作出直线和平面所成的角和解三角形.方法二:(向量法),其中是直线的方向向量,是平面的法向量,是直线和平面所成的角.19、(Ⅰ);(Ⅱ).【解析】
(I)将已知条件转化为,由此求得的值,进而求得的通项公式.(II)利用求得的表达式,由此求得的表达式,利用分组求和法求的值.【详解】(Ⅰ)设等比数列的公比即,解得:或,又的各项为正,,故(Ⅱ)设,数列前n项和为.由解得..,.【点睛】本小题主要考查等比数列基本量的计算,考查数列通项公式的求法,考查分组求和法,所以中档题.20、(1)(2)【解析】
(1)首先把参数方程转化为普通方程,利用普通方程与极坐标方程互化的公式即可得到曲线的极坐标方程;(2)分别联立与的极坐标方程、与的极坐标方程,得到、两点的极坐标,即可求出的长,再计算出到直线的距离,由此即可得到的面积.【详解】解:(1),其普通方程为,化为极坐标方程为(2)联立与的极坐标方程:,解得点极坐标为联立与的极坐标方程:,解得点极坐标为,所以,又点到直线的距离,故的面积.【点睛】本题考查参数方程、普通方程、极坐标方程的互化,利用极径的几何意义求三角形面积是解题的关键,属于中档题.21、(1)90;(2);(3)有的把握认为“该校学生的每周平均课外阅读时间与性别有关”【解析】
(1)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供水管道改造项目管理合同
- 旅游度假村建设项目合同样本
- 二零二四年环保节能设备安装改造合同
- 保险公司暖气管道维修施工合同
- 城市照明钢结构施工合同范本
- 玩具公司购房合同审查
- 航空制造车辆租赁合同
- 液体化工运输司机雇佣合同样本
- 娱乐经纪灰土施工合同
- 纪念邮票设计画师合作合同
- 广东省深圳市(2024年-2025年小学五年级语文)人教版质量测试(上学期)试卷及答案
- 智研咨询发布:中国铜铝复合板带行业竞争格局及发展前景研究报告
- 初三毕业班课件2024-2025学年期中家长会
- 深圳2020-2024年中考英语真题复习专题01 语法填空(解析版)
- 2021-2024世界篮球趋势发展报告
- 2024年国家公务员考试《行测》真题卷(行政执法)答案和解析
- 消化内科五年发展规划
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 医院助理全科医生培训基地自评报告
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 幼儿园课件:手机本领大-大班-社会
评论
0/150
提交评论