




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的值为()A. B. C. D.2.已知函数,则的零点个数为()A.0 B.1 C.2 D.33.已知复数是纯虚数是虚数单位),则实数等于()A.-2 B.2 C. D.4.若,则=()A.-1 B.1 C.2 D.05.如图,将一个各面都涂了油漆的正方体,切割为个同样大小的小正方体,经过搅拌后,从中随机取出一个小正方体,记它的油漆面数为,则的均值()A. B. C. D.6.已知函数在定义域上有两个极值点,则实数的取值范围是()A. B. C. D.7.下列函数中,值域为的偶函数是()A. B. C. D.8.已知集合A={x|x2>x,x∈R},A.{x|12≤x≤1} B.{x|12<x<2} C.{x|x≤19.下列命题中,正确的命题是()A.若,则B.若,则不成立C.,则或D.,则且10.设函数在上单调递增,则实数的取值范围()A. B. C. D.11.某校开设10门课程供学生选修,其中、、三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是()A.70 B.98 C.108 D.12012.若函数的定义域为R,则实数a的取值范围为()A. B.(0,1)C. D.(﹣1,0)二、填空题:本题共4小题,每小题5分,共20分。13.若,则_______.14.将正整数对作如下分组,第组为,第组为,第组为,第组为则第组第个数对为__________.15.要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为.(以数字作答)16.已知某运动员每次投篮命中的概率都为.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出到之间取整数值的随机数,指定,,,表示命中,,,,,,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了组随机数:据此估计,该运动员三次投篮恰有两次命中的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:在中,,,分别是角,,所对的边长,是和的等差中项.(Ⅰ)求角;(Ⅱ)若的面积,且,求的周长.18.(12分)如图,在正三棱锥中,侧棱长和底边长均为,点为底面中心.(1)求正三棱锥的体积;(2)求证:.19.(12分)已知函数,().(1)当时,求的单调区间;(2)设点,是函数图象的不同两点,其中,,是否存在实数,使得,且函数在点切线的斜率为,若存在,请求出的范围;若不存在,请说明理由.20.(12分)已知函数,其中.(1)当时,求曲线在点处的切线方程;(2)当时,若函数在区间上的最小值为,求的取值范围.21.(12分)已知函数.(1)若函数是偶函数,求的值;(2)若函数在上,恒成立,求的取值范围.22.(10分)已知函数.(Ⅰ)若,求的取值范围;(Ⅱ)证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
直接利用诱导公式以及同角三角函数基本关系式转化求解即可.【详解】解:因为,则.故选:B.【点睛】本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力,属于基础题.2、C【解析】
分段令,解方程即可得解.【详解】当时,令,得;当时,令,得.故选C.【点睛】本题主要考查了分段函数零点的求解,涉及指数和对数方程,属于基础题.3、C【解析】
化简复数,根据复数为纯虚数得到答案.【详解】知复数是纯虚数且故答案选C【点睛】本题考查了复数计算,属于简单题.4、A【解析】
将代入,可以求得各项系数之和;将代入,可求得,两次结果相减即可求出答案.【详解】将代入,得,即,将代入,得,即,所以故选A.【点睛】本题考查二项式系数的性质,若二项式展开式为,则常数项,各项系数之和为,奇数项系数之和为,偶数项系数之和为.5、C【解析】分析:由题意知,分别求出相应的概率,由此能求出.详解:由题意知,;;;;.故选:C.点睛:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.6、D【解析】
根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,进行计算,可得结果.【详解】,令,方程有两个不等正根,,则:故选:D【点睛】本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.7、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.8、C【解析】
求出集合A中的不等式的解集确定出A,找出A,B的交集后直接取补集计算【详解】∵A=B={x|∴A∩B={x|1<x<2则CR(A∩B)={x|x≤1故选C【点睛】本题主要考查了不等式的解法及集合的交集,补集的运算,属于基础题.9、C【解析】
A.根据复数虚部相同,实部不同时,举例可判断结论是否正确;B.根据实数的共轭复数还是其本身判断是否成立;C.根据复数乘法的运算法则可知是否正确;D.考虑特殊情况:,由此判断是否正确.【详解】A.当时,,此时无法比较大小,故错误;B.当时,,所以,所以此时成立,故错误;C.根据复数乘法的运算法则可知:或,故正确;D.当时,,此时且,故错误.故选:C.【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若,则有.10、A【解析】分析:求得函数的导数,令,求得函数的递增区间,又由在上单调递增,列出不等式组,即可求解实数的取值范围.详解:由函数,可得,令,即,即,解得,所以函数在上单调递增,又由函数在上单调递增,所以,解得,故选A.点睛:本题主要考查了根据函数的单调性利用导数求解参数的取值范围问题,其中熟记导函数的取值正负与原函数的单调性之间的关系是解答的关键,着重考查了推理与运算能力.11、B【解析】根据题意,分2种情况讨论:①、从A,B,C三门中选出1门,其余7门中选出2门,有种选法,②、从除A,B,C三门之外的7门中选出3门,有种选法;故不同的选法有63+35=98种;故选:B.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.12、A【解析】
首先由题意可得,再由对数式的运算性质变形,然后求解对数不等式得答案.【详解】由题意可得,第一个式子解得或;第二个式子化简为,令,则,解得或,则或,则或.即或.综上,实数的取值范围为.故选:A.【点睛】本题主要考查以函数定义域为背景的恒成立问题,二次型函数的恒成立问题一般借助判别式进行处理,本题同时兼顾考查了对数的运算性质,综合性较强,侧重考查数学运算的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:由,得展开式的每一项的系数为,代入,即可求解.详解:由题意,得展开式的每一项的系数为,所以又由,且,所以.点睛:本题主要考查了二项式定理的应用,其中对二项展开式的灵活变形和恰当的赋值,以及熟练掌握二项式系数的性质是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.14、【解析】根据归纳推理可知,每对数字中两个数字不相等,且第一组每一对数字和为,第二组每一对数字和为,第三组每对数字和为,第组每一对数字和为,第组第一对数为,第二对数为,第对数为,第对数为,故答案为.15、288.【解析】解:∵数学课排在前3节,英语课不排在第6节,∴先排数学课有种排法,再排最后一节有种排法,剩余的有种排法,∴根据分步计数原理知共有=288种排法.16、0.25【解析】由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.共5组随机数,∴所求概率为.答案为:0.25.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)根据正弦定理得到,即,解得答案.(Ⅱ)根据面积公式得到,根据余弦定理得到,得到周长.【详解】(Ⅰ)由已知得,由正弦定理得,即.∵,∴,∴.由于,∴.∵,∴.(Ⅱ)由得,,代入上式得.由余弦定理得,∴,∴,∴的周长为.【点睛】本题考查了正弦定理,余弦定理,面积公式,等差中项,意在考查学生的计算能力和综合应用能力.18、(1);(2)证明见解析.【解析】
(1)连接,根据题意得到底面,,求出,再由三棱锥的体积公式,即可求出结果;(2)取的中点为,连接,,得到,,根据线面垂直的判定定理,得到平面,进而可得出结果.【详解】(1)连接,因为在正三棱锥中,侧棱长和底边长均为,点为底面中心,所以底面,,因此;所以正三棱锥的体积;(2)取的中点为,连接,,因为在正三棱锥中,侧棱长和底边长均为,所以,,又,平面,平面,所以平面;又平面,因此.【点睛】本题主要考查求三棱锥的体积,以及证明线线垂直,熟记棱锥的体积公式,以及线面垂直的判定定理与性质定理即可,属于常考题型.19、(1)的增区间为,减区间为;(2)存在实数取值范围是.【解析】
(1)分别研究,两种情况,先对函数求导,利用导数的方法判断其单调性,即可得出结果;(2)先由题意,得到,再根据,得到,得出,再由导数的几何意义,结合题中条件,得到,构造函数,用导数的方法研究函数的单调性,进而可得出结果.【详解】(1)当时,,令得,令得.当时,,所以在上是增函数。所以当时,的增区间为,减区间为;(2)由题意可得:,,所以,,令,则在单调递增,单调递减,,当时,,所以存在实数取值范围是.【点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究单调性,最值等,属于常考题型.20、(1);(1)[3,+∞).【解析】
(1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出a的范围即可.【详解】(1)当a=1时,f(x)=x1﹣7x+3lnx(x>2),∴,∴f(1)=﹣6,f'(1)=﹣1.∴切线方程为y+6=﹣1(x﹣1),即1x+y+4=2.(1)函数f(x)=ax1﹣(a+6)x+3lnx的定义域为(2,+∞),当a>2时,,令f'(x)=2得或,①当,即a≥3时,f(x)在[1,3e]上递增,∴f(x)在[1,3e]上的最小值为f(1)=﹣6,符合题意;②当,即时,f(x)在上递减,在上递增,∴f(x)在[1,3e]上的最小值为,不合题意;③当,即时,f(x)在[1,3e]上递减,∴f(x)在[1,3e]上的最小值为f(3e)<f(1)=﹣6,不合题意.综上,a的取值范围是[3,+∞).【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.21、(1);(2)【解析】
(1)利用偶函数的定义判断得解;(2)对x分三种情况讨论,分离参数求最值即得实数k的取值范围.【详解】(1)由题得,由于函数g(x)是偶函数,所以,所以k=2.(2)由题得在上恒成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/ZGSCJXH 3-2020文创艺术品销售服务基本规范
- 工商企业管理考试试题及答案2025年
- 2025年网络营销师资格考试试卷及答案解析
- 2025年艺术素养综合测试题及答案
- 2025年人工智能应用与产业发展考试试卷及答案
- 2025年人文地理专业资格考试试题及答案
- 2025年农村经济发展相关政策考试试卷及答案
- 2025年高效团队沟通与合作的能力测评考试试题及答案
- 2025年海洋科学基础知识考核试卷及答案
- 2025年护理职业技能实操试题及答案
- 预防野生菌中毒主题班会集合6篇
- esd术患者的护理查房
- 安全管理应急预案之应急预案编制格式和要求
- 国家开放大学期末机考人文英语1
- 钻孔压水试验记录表
- 环保餐具的设计
- 结核菌素(PPD、EC)皮肤试验报告单
- 电工学(第六版)中职PPT完整全套教学课件
- 产业命题赛道命题解决对策参考模板
- 砼塔施工方案
- 资本运作理论与操作实务课件
评论
0/150
提交评论