2023届山西省晋中市和诚中学高二数学第二学期期末综合测试模拟试题含解析_第1页
2023届山西省晋中市和诚中学高二数学第二学期期末综合测试模拟试题含解析_第2页
2023届山西省晋中市和诚中学高二数学第二学期期末综合测试模拟试题含解析_第3页
2023届山西省晋中市和诚中学高二数学第二学期期末综合测试模拟试题含解析_第4页
2023届山西省晋中市和诚中学高二数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移个单位,则所得函数图像对应的解析式为()A. B.C. D.2.已知函数,则等于()A.-1 B.0 C.1 D.3.设,是两个不重合的平面,,是空间两条不重合的直线,下列命题不正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则4.《高中数学课程标准》(2017版)规定了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()(注:雷达图(RadarChart),又可称为戴布拉图、蜘蛛网图(SpiderChart),可用于对研究对象的多维分析)A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体水平优于甲5.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.246.已知曲线的参数方程为:,且点在曲线上,则的取值范围是()A. B. C. D.7.(+)(2-)5的展开式中33的系数为A.-80 B.-40 C.40 D.808.二项式的展开式的各项中,二项式系数最大的项为()A. B.和C.和 D.9.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为()A.0.12 B.0.42 C.0.46 D.0.8810.已知函数,若恰有两个不同的零点,则的取值范围为()A. B. C. D.11.某学校为解决教师的停车问题,在校内规划了一块场地,划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有()A.种 B.种 C.种 D.种12.在某次高三联考数学测试中,学生成绩服从正态分布,若在内的概率为0.75,则任意选取一名学生,该生成绩高于115的概率为()A.0.25 B.0.1 C.0.125 D.0.5二、填空题:本题共4小题,每小题5分,共20分。13.下列随机变量中不是离散型随机变量的是__________(填序号).①某宾馆每天入住的旅客数量是;②某水文站观测到一天中珠江的水位;③西部影视城一日接待游客的数量;④阅海大桥一天经过的车辆数是.14.函数与函数在第一象限的图象所围成封闭图形的面积是_____.15.为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:123457.06.53.82.2已知和具有线性相关关系,且回归方程为,那么表中的值为__________.16.已知函数(),若对任意,总存在满足,则正数a的最小值是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如下表所示:喜欢盲拧不喜欢盲拧总计男22▲30女▲12▲总计▲▲50表1并邀请这30名男生参加盲拧三阶魔方比赛,其完成情况如下表所示:成功完成时间(分钟)[0,10)[10,20)[20,30)[30,40]人数101055表2(1)将表1补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关?(2)根据表2中的数据,求这30名男生成功完成盲拧的平均时间(同一组中的数据用该组区间的中点值代替);(3)现从表2中成功完成时间在[0,10)内的10名男生中任意抽取3人对他们的盲拧情况进行视频记录,记成功完成时间在[0,10)内的甲、乙、丙3人中被抽到的人数为,求的分布列及数学期望.附参考公式及数据:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818.(12分)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

19.(12分)已知为实数,函数,函数.(1)当时,令,求函数的极值;(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.20.(12分)已知a、b、c都是正实数,且ab+bc+ca=1求证:21.(12分)某公司的一次招聘中,应聘者都要经过三个独立项目,,的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过,,每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为,求的概率分布和数学期望.22.(10分)已知抛物线C的顶点为原点,焦点F与圆的圆心重合.(1)求抛物线C的标准方程;(2)设定点,当P点在C上何处时,的值最小,并求最小值及点P的坐标;(3)若弦过焦点,求证:为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得,再将所得图像向左平移个单位,得,选B.2、B【解析】

先求,再求.【详解】由已知,得:所以故选:B【点睛】本题考查了分段函数求值,属于基础题.3、D【解析】

选项逐一分析,得到正确答案.【详解】A.正确,垂直于同一条直线的两个平面平行;B.正确,垂直于同一个平面的两条直线平行;C.正确,因为平面内存在直线,使,若,则,则;D.不正确,有可能.故选D.【点睛】本题重点考查了平行和垂直的概念辨析问题,属于简单题型.4、D【解析】

根据雷达图,依次判断每个选项的正误得到答案.【详解】根据雷达图得甲的数据分析素养低于乙,所以A错误根据雷达图得甲的数学建模素养等于数学抽象素养,所以B错误根据雷达图得乙的六大素养中数学建模和数学抽象最差,所以C错误根据雷达图得乙整体为27分,甲整体为22分,乙的六大素养整体水平优于甲,所以D正确故答案选D【点睛】本题考查了雷达图,意在考查学生解决问题的能力.5、D【解析】试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有种考点:排列、组合及简单计数问题6、C【解析】分析:由题意得曲线C是半圆,借助已知动点在单位圆上任意动,而所求式子,的形式可以联想成在单位圆上动点P与点C(0,1)构成的直线的斜率,进而求解.详解:∵即

其中由题意作出图形,,

令,则可看作圆上的动点到点的连线的斜率而相切时的斜率,

由于此时直线与圆相切,

在直角三角形中,,由图形知,的取值范围是则的取值范围是.

故选C.点睛:此题重点考查了已知两点坐标写斜率,及直线与圆的相切与相交的关系,还考查了利用几何思想解决代数式子的等价转化的思想.7、C【解析】,由展开式的通项公式可得:当时,展开式中的系数为;当时,展开式中的系数为,则的系数为.故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.8、C【解析】

先由二项式,确定其展开式各项的二项式系数为,进而可确定其最大值.【详解】因为二项式展开式的各项的二项式系数为,易知当或时,最大,即二项展开式中,二项式系数最大的为第三项和第四项.故第三项为;第四项为.故选C【点睛】本题主要考查二项式系数最大的项,熟记二项式定理即可,属于常考题型.9、D【解析】由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12.∴至少有一人被录取的概率为1-0.12=0.88.故选D.考点:相互独立事件的概率.10、B【解析】分析:求出函数的导数,通过导数判定函数的单调性,从而得到的取值范围详解:令,则,令,在单调增,在单调减的取值范围为故选点睛:本题主要考查的是函数的零点问题,解决问题的关键是导数判断函数的单调性,然后通过数形结合的方法得到关于的范围11、A【解析】根据题意,要求有4个空车位连在一起,则将4个空车位看成一个整体,将这个整体与8辆不同的车全排列,有种不同的排法,即有种不同的停车方法;故选A.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.12、C【解析】

根据正态曲线的对称性求解即可得到所求概率.【详解】由题意得,区间关于对称,所以,即该生成绩高于115的概率为.故选C.【点睛】本题考查根据正态曲线的对称性求在给定区间上的概率,求解的关键是把所给区间用已知区间表示,并根据曲线的对称性进行求解,考查数形结合的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、②【解析】

利用离散型随机变量的定义直接求解.【详解】①③④中的随机变量的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量;②中随机变量可以取某一区间内的一切值,但无法按一定次序一一列出,故不是离散型随机变量.故答案为:②【点睛】本题考查离散型随机变量的判断,是基础题,解题时要认真审题,注意离散型随机变量的定义的合理运用,比较基础.14、【解析】

先求出直线与曲线的交点坐标,封闭图形的面积是函数y=x与y=在x∈[0,1]上的积分.【详解】解:联立方程组可知,直线y=x与曲线y=的交点为(0,0)(1,1);∴所围成的面积为S=.故答案为.【点睛】本题考查了定积分,找到积分区间和被积函数是解题关键,属于基础题.15、5.5【解析】将样本中心代入回归方程得到m=5.5.故答案为:5.5.16、【解析】

对任意,总存在满足,只需函数的值域为函数的值域的子集.【详解】函数()是对勾函数,对任意,在时,即取得最小值,值域为当时,若,即时在上是单减函数,在上是单增函数,此时值域为由题得,函数的值域为函数的值域的子集.显然成立当时,若,即时是单增函数,此时值域为由题得,函数的值域为函数的值域的子集.,解得综上正数a的最小值是故答案为:【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)能(2)(3)见解析【解析】分析:根据题意完善表格,由卡方公式得出结论。(2)根据题意,平均时间为计算即可(3)由题意,满足超几何分布,由超几何分布计算概率,数学期望详解:(1)依题意,补充完整的表1如下:喜欢盲拧不喜欢盲拧总计男22830女81220总计302050由表中数据计算得的观测值为所以能在犯错误的概率不超过的前提下认为是否喜欢盲拧与性别有关。(2)依题意,所求平均时间为(分钟)(3)依题意,X的可能取值为0,1,2,3,故故X的分布列为X0123P故点睛:计算离散型随机变量的概率,要融入题目的情景中去,对于文字描述题,题目亢长,要逐句的分析。超几何分布的特征:1.样本总体分为两大类型,要么类,要么类。2.超几何分布是组合问题,分组或分类,有明显的选次品的意思。3.超几何分布是将随机变量分类,每一类之间是互斥事件。4.超几何分布的随机变量的确定我们只需搞清楚最少和最多两种情况,其他的在最少和最多之间。18、(1)90;(2)0.75;(3)有的把握认为“该校学生的每周平均体育运动时间与性别有关”.【解析】试题分析:(1)由分层抽样性质,得到;(2)由频率分布直方图得;(3)利用2×2列联表求.试题解析:(1)由,所以应收集90位女生的样本数据.(2)由频率发布直方图得,该校学生每周平均体育运动时间超过4小时的概率为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生女生总计每周平均体育运动时间不超过4小时453075每周平均体育运动时间超过4小时16560225总计21090300结合列联表可算得有95%的把握认为“该校学生的平均体育运动时间与性别有关”点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.19、(1)的极小值为,无极大值.(2)【解析】

试题分析:(1)当时,,定义域为,由得.列表分析得的极小值为,无极大值.(2)恒成立问题及存在问题,一般利用最值进行转化:在上恒成立.由于不易求,因此再进行转化:当时,可化为,令,问题转化为:对任意恒成立;同理当时,可化为,令,问题转化为:对任意的恒成立;以下根据导函数零点情况进行讨论即可.试题解析:(1),,令,得.列表:x

0

+

极小值

所以的极小值为,无极大值.(2)当时,假设存在实数满足条件,则在上恒成立.1)当时,可化为,令,问题转化为:对任意恒成立;(*)则,,.令,则.①时,因为,故,所以函数在时单调递减,,即,从而函数在时单调递增,故,所以(*)成立,满足题意;②当时,,因为,所以,记,则当时,,故,所以函数在时单调递增,,即,从而函数在时单调递减,所以,此时(*)不成立;所以当,恒成立时,;2)当时,可化为,令,问题转化为:对任意的恒成立;(**)则,,.令,则.①时,,故,所以函数在时单调递增,,即,从而函数在时单调递增,所以,此时(**)成立;②当时,ⅰ)若,必有,故函数在上单调递减,所以,即,从而函数在时单调递减,所以,此时(**)不成立;ⅱ)若,则,所以当时,,故函数在上单调递减,,即,所以函数在时单调递减,所以,此时(**)不成立;所以当,恒成立时,;综上所述,当,恒成立时,,从而实数的取值集合为.考点:利用导数求极值,利用导数研究函数单调性20、见解析【解析】

利用不等式证明.【详解】∵,∴,时取等号.又均为正数,∴【点睛】本题考查用基本不等式证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论