版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.不等式的解集是()A.或 B.C.或 D.2.设,若,则展开式中二项式系数最大的项为()A.第4项 B.第5项 C.第4项和第5项 D.第7项3.设,,,则大小关系是()A. B.C. D.4.已知复平面内的圆:,若为纯虚数,则与复数对应的点()A.必在圆外 B.必在上 C.必在圆内 D.不能确定5.若将函数的图像向左平移个单位长度,则平移后图像的一个对称中心可以为()A. B. C. D.6.若实数x、y的取值如表,从散点图分析,y与x线性相关,且回归方程为y=3.5x12345y27812mA.15 B.16 C.16.2 D.177.设函数是的导函数,,,,,则()A. B.C. D.8.若(为虚数单位),则复数()A. B. C. D.9.已知集合,,则=()A. B. C. D.10.直线的倾斜角为()A. B. C. D.11.下列等式中,错误的是()A. B.C. D.12.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个直三棱柱的每条棱长都是,且每个顶点都在球的表面上,则球的表面积为________14.若函数为偶函数,则的值为______.15.不等式的解集是__________.16.________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时,如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm³的沙,则该沙漏的一个沙时为多少秒?(精确到1秒)(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度.(精确到0.1cm)18.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:.P(K2≥k)0.0500.0100.001k3.8416.63510.82819.(12分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.(1)从盒中每次随机抽取1个零件,每次观察后都将零件放回盒中,求3次抽取中恰有1次抽到使用过的零件的概率;(2)从盒中随机抽取2个零件,使用后放回盒中,记此时盒中使用过的零件个数为X,求X的分布列和数学期望.20.(12分)三棱柱中,分别是、上的点,且,.设,,.(Ⅰ)试用表示向量;(Ⅱ)若,,,求MN的长..21.(12分)大型综艺节目,《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的根据调查显示,是否喜欢盲拧魔方与性别有关为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如表所示,并邀请其中20名男生参加盲拧三阶魔方比赛,其完成情况如表所示.(Ⅰ)将表补充完整,并判断能否在犯错误的概率不超过的前提下认为是否喜欢盲拧与性别有关?(Ⅱ)现从表中成功完成时间在和这两组内的6名男生中任意抽取2人对他们的盲拧情况进行视频记录,求2人成功完成时间恰好在同一组内的概率.附参考公式及数据:,其中.22.(10分)某地方政府召开全面展开新旧动能转换重大工程动员大会,动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前、后生产的大量产品中各抽取了200件作为样本,检测一项质量指标值.若该项质量指标值落在内的产品视为合格品,否则为不合格品.如图所示的是设备改造前样本的频率分布直方图.(1)若设备改造后样本的该项质量指标值服从正态分布,求改造后样本中不合格品的件数;(2)完成下面2×2列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量标值与设备改造有关.0设备改造前设备改造后合计合格品件数不合格品件数合计附参考公式和数据:若,则,.0.1500.1000.0500.0250.0102.0722.7063.8415.0246.635
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先求解出不等式,然后用集合表示即可。【详解】解:,即,即,故不等式的解集是,故选D。【点睛】本题是集合问题,解题的关键是正确求解绝对值不等式和规范答题。2、C【解析】
先利用二项展开式的基本定理确定的数值,再求展开式中系数最大的项【详解】令,可得,令,则,由题意得,代入得,所以,又因为,所以展开式中二项式系数最大的项为第4项和第项,故选【点睛】本题考查了二项式定理的应用问题,也考查了赋值法求二项式的次数的应用问题,属于基础题。3、A【解析】
根据三个数的特征,构造函数,求导,判断函数的单调性,利用函数的单调性可以判断出的大小关系.【详解】解:考查函数,则,在上单调递增,,,即,,故选A.【点睛】本题考查了通过构造函数,利用函数的单调性判断三个数大小问题,根据三个数的特征构造函数是解题的关键.4、A【解析】
设复数,再利用为纯虚数求出对应的点的轨迹方程,再与圆:比较即可.【详解】由题,复平面内圆:对应的圆是以为圆心,1为半径的圆.若为纯虚数,则设,则因为为纯虚数,可设,.故故,因为,故.当有.当时,两式相除有,化简得.故复数对应的点的轨迹是.则所有的点都在为圆心,1为半径的圆外.故选:A【点睛】本题主要考查复数的轨迹问题,根据复数在复平面内的对应的点的关系求解轨迹方程即可.属于中等题型.5、A【解析】
通过平移得到,即可求得函数的对称中心的坐标,得到答案.【详解】向左平移个单位长度后得到的图像,则其对称中心为,或将选项进行逐个验证,选A.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的应用,其中解答中根据三角函数的图象变换,以及熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力.6、D【解析】
计算出样本的中心点x,y,将该点的坐标代入回归直线方程可得出【详解】由表格中的数据可得x=1+2+3+4+55由于回归直线过点x,y,所以,3.5×3-1.3=m+295【点睛】本题考查回归直线的基本性质,在解回归直线相关的问题时,熟悉结论“回归直线过样本的数据中心点x,7、B【解析】分析:易得到fn(x)表达式以8为周期,呈周期性变化,由于2018÷8余2,故f2008(x)=f2(x),进而得到答案详解:∵f0(x)=ex(cosx+sinx),∴f0′(x)=ex(cosx+sinx)+ex(﹣sinx+cosx)=2excosx,∴f1(x)==excosx,∴f1′(x)=ex(cosx﹣sinx),∴f2(x)==ex(cosx﹣sinx),∴f2′(x)=ex(cosx﹣sinx)+ex(﹣sinx﹣cosx)=﹣2exsinx,∴f3(x)=﹣exsinx,∴f3′(x)=﹣ex(sinx+cosx),∴f4(x)=﹣ex(cosx+sinx),∴f4′(x)=﹣2excosx,∴f5(x)=﹣excosx,∴f6(x)=﹣ex(cosx﹣sinx),∴f7(x)=exsinx,∴f8(x)=ex(cosx+sinx),…,∴=f2(x)=,故选:B.点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8、B【解析】由可得:,故选B.9、C【解析】
先计算集合N,再计算得到答案.【详解】故答案选C【点睛】本题考查了集合的运算,属于简单题.10、B【解析】试题分析:记直线的倾斜角为,∴,故选B.考点:直线的倾斜角.11、C【解析】分析:计算每一选项的左右两边,检查它们是否相等.详解:通过计算得到选项A,B,D的左右两边都是相等的.对于选项C,,所以选项C是错误的.故答案为C.点睛:本题主要考查排列组合数的计算,意在考查学生对这些基础知识的掌握水平和基本计算能力.12、A【解析】
该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,分别求出体积即可.【详解】该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,底面三角形的面积为,三棱柱和三棱锥的高为1,则三棱柱的体积,三棱锥的体积为,故该几何体的体积为.故选A.【点睛】本题考查了空间组合体的三视图,考查了学生的空间想象能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设此直三棱柱两底面的中心分别为,则球心为线段的中点,利用勾股定理求出球的半径,由此能求出球的表面积.【详解】∵一个直三棱柱的每条棱长都是,且每个顶点都在球的球面上,∴设此直三棱柱两底面的中心分别为,则球心为线段的中点,设球的半径为,则∴球的表面积.故答案为:.【点睛】本题考查球的表面积的求法,空间思维能力,考查转化化归思想、数形结合思想、属于中档题.14、2.【解析】分析:因为函数是偶函数,先根据得出第二段函数表达式,然后再计算即可.详解:由题可得:当时,-x>0,故所以=0+2=2,故答案为2.点睛:考查偶函数的基本性质,根据偶函数定义求出第二段表达式是解题关键,属于中档题.15、【解析】分析:把不等式化为同底的不等式,利用指数函数的单调性即可求解.详解:原不等式可以化为,所以,故或者,不等式的解集为,填.点睛:一般地,对于不等式,(1)如果,则原不等式等价于;(2)如果,则原不等式等价于.16、【解析】
将定积分分为两部分,前一部分根据奇函数积分为0,后一部分转化为几何面积得到答案.【详解】为奇函数表示半径为3的半圆面积:为故答案为:【点睛】本题考查了定积分的计算,根据奇函数的性质可以简化运算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)一沙时为1986秒;(2)沙堆高度约为2.4cm.【解析】
(1)开始时,沙漏上部分圆锥中的细沙的高为,底面半径为39.71(秒)所以,沙全部漏入下部约需1986秒(2)细沙漏入下部后,圆锥形沙堆的底面半径4,设高为锥形沙堆的高度约为2.4cm.18、(1);(2)能有的把握认为男、女顾客对该商场服务的评价有差异.【解析】
(1)从题中所给的列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有的把握认为男、女顾客对该商场服务的评价有差异.【详解】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为,50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为,(2)由列联表可知,所以能有的把握认为男、女顾客对该商场服务的评价有差异.【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算的值,独立性检验,属于简单题目.19、(1)3次抽取中恰有1次抽到使用过的零件的概率p=150(2)随机变量X的分布列为:X
2
3
4
P
12110211021EX=24【解析】试题分析:(1)这是一个有放回地抽取的问题,可以看作独立重复试验的概率问题.首先求出“从盒中随机抽取1个零件,抽到的是使用过的零件”的概率,然后用独立重复事件的概率公式便可求得“3次抽取中恰有1次抽到使用过的零件”的概率.(2)7个零件中有2个是使用过的,再抽取2个使用后再放回,则最多有4个是使用过的,最少有2个是使用过的,所以随机变量X的所有取值为2,3,4.“X=2”表示抽取的2个都是使用过的,“X=3”表示抽取的2个中恰有1个是使用过的,“X=4”表示抽取的2个都是未使用过的,这是一个超几何分布问题,由超几何分布的概率公式可求得随机变量X的分布列.试题解析:(1)记“从盒中随机抽取1个零件,抽到的是使用过的零件”为事件A,则P(A)=2所以3次抽取中恰有1次抽到使用过的零件的概率P=C(2)随机变量X的所有取值为2,3,4.P(X=2)=C22P(X=4)=C所以,随机变量X的分布列为:X
2
3
4
P
12110211021EX=2×1考点:1、独立重复试验的概率;2、超几何分布;3、随机变量的分布列.20、(1)(2)【解析】分析:(1)直接利用三角形加法和减法法则得到.(2)先求,再求MN的长.详解:(Ⅰ)(Ⅱ),,.:本题主要考查向量的运算法则和基底法,考查向量的模,意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 报废车辆协议书大全
- 出租房子意外免责协议合同
- 2024年度电商行业发展战略合同
- 二零二四年度企业数字化转型战略规划合同
- 二零二四年度仪器设备租赁合同
- 店面分割协议书
- 二零二四年度品牌授权使用合同标的及相关权利义务
- 矸石运输路线规划合同2024版
- 二零二四年度诊所医疗废物回收处理服务合同
- 二零二四年度技术开发合作保密协议
- HYT 069-2005 赤潮监测技术规程
- 审计报告中无所有者权益变动表书面声明
- 园林施工安全
- 2024年职业技能“人力资源管理服务”知识考试题库与答案
- 城市管理大数据平台 第2部分:数据分级分类
- 全国初中数学青年教师优质课一等奖《平行线的性质》教学设计
- 中国华电在线测评题
- 四川省眉山市2023-2024学年高一上学期期末考试英语试题(解析版)
- 电信运营商行业-中国联通数据安全管理办法
- 北师大版数学八年级上册综合与实践《哪一款手机资费套餐更合适》课件
- 股东之间利益冲突的识别、审查和管理制度
评论
0/150
提交评论