版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数则函数的零点个数是()A. B. C. D.2.在的展开式中,各项系数与二项式系数和之比为,则的系数为()A.21 B.63 C.189 D.7293.设数列是单调递减的等差数列,前三项的和为12,前三项的积为28,则()A.1B.4C.7D.1或74.设集合,,则()A. B. C. D.5.己知,是椭圆的左右两个焦点,若P是椭圆上一点且,则在中()A. B. C. D.16.若复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.“1<x<2”是“|x|>1”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.函数的单调递减区间是()A. B.与C.与 D.9.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.10.已知集合A={x|y=,x∈Z},B={y|y=sin(x+φ)},则A∩B中元素的个数为()A.3 B.4C.5 D.611.若△ABC的内角A,B,C的对边分别为a,b,c,且,△ABC的面,则a=()A.1 B. C. D.12.《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更、簪裹、上造、公士,凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其译文是“现有从高到低依次为大夫、不更、簪裹、上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次高低分配(即根据爵次高低分配得到的猎物数依次成等差数列),问各得多少鹿?”已知上造分得只鹿,则大夫所得鹿数为()A.1只 B.只 C.只 D.2只二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的一个焦点是,则该双曲线的渐近线方程是______14.在平面直角坐标系中,已知点满足,过作单位圆的两条切线,切点分别为,则线段长度的取值范围是______.15.若,且,,则_______.16.已知函数,,,当时,的值域为_____;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知椭圆:的离心率为,且过点.(1)求椭圆的方程;(2)设点,点在轴上,过点的直线交椭圆交于,两点.①若直线的斜率为,且,求点的坐标;②设直线,,的斜率分别为,,,是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,请说明理由.18.(12分)已知f(x)=ln(1)若a=1,求函数H(x)=f(x)-g(x)的单调区间;(2)若函数H(x)=f(x)-g(x)在其定义域上不单调,求实数a的取值范围;19.(12分)(理科学生做)某一智力游戏玩一次所得的积分是一个随机变量,其概率分布如下表,数学期望.(1)求a和b的值;(2)某同学连续玩三次该智力游戏,记积分X大于0的次数为Y,求Y的概率分布与数学期望.X036Pab20.(12分)随着人们生活水平的日益提高,人们对孩子的培养也愈发重视,各种兴趣班如雨后春笋般出现在我们日常生活中.据调查,3~6岁的幼儿大部分参加的是艺术类,其中舞蹈和绘画比例最大,就参加兴趣班的男女比例而言,女生参加兴趣班的比例远远超过男生.随机调查了某区100名3~6岁幼儿在一年内参加舞蹈或绘画兴趣班的情况,得到如下表格:不参加舞蹈且不参加绘画兴趣班参加舞蹈不参加绘画兴趣班参加绘画不参加舞蹈兴趣班参加舞蹈且参加绘画兴趣班人数14352625(Ⅰ)估计该区3~6岁幼儿参加舞蹈兴趣班的概率;(Ⅱ)通过所调查的100名3~6岁幼儿参加兴趣班的情况,填写下面列联表,并根据列联表判断是否有99.9%的把握认为参加舞蹈兴趣班与性别有关.参加舞蹈兴趣班不参加舞蹈兴趣班总计男生10女生70总计附:.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示(1)求的值(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求在第1组已被抽到人的前提下,第3组被抽到人的概率;(3)若从所有参与调查的人中任意选出人,记关注“生态文明”的人数为,求的分布列与期望.22.(10分)在二项式的展开式中,二项式系数之和为256,求展开式中所有有理项.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
通过对式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】函数的零点即方程和的根,函数的图象如图所示:由图可得方程和共有个根,即函数有个零点,故选:A.【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.2、C【解析】分析:令得各项系数和,由已知比值求得指数,写出二项展开式通项,再令的指数为4求得项数,然后可得系数.详解:由题意,解得,∴,令,解得,∴的系数为.故选C.点睛:本题考查二项式定理,考查二项式的性质.在的展开式中二项式系数和为,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为.3、C【解析】试题分析:,所以,因为递减数列,所以,解得。考点:等差数列4、D【解析】函数有意义,则,函数的值域是,即.本题选择D选项.5、A【解析】
根据椭圆方程求出、,即可求出、,再根据余弦定理计算可得;【详解】解:因为,所以,,又因为,,所以,在中,由余弦定理,即,,故选:【点睛】本题考查椭圆的简单几何性质及余弦定理解三角形,属于基础题.6、C【解析】分析:根据复数的乘法运算进行化简,然后根据复数的几何意义,即可得到结论.详解:∵z=(﹣8+i)i=﹣8i+i2=﹣1﹣8i,对应的点的坐标为(﹣1,﹣8),位于第三象限,故选C.点睛:本题主要考查复数的几何意义,利用复数的运算先化简是解决本题的关键,属于基础题.7、A【解析】
解不等式,进而根据充要条件的定义,可得答案.【详解】由题意,不等式,解得或,故“”是“”成立的充分不必要条件,故选A.【点睛】本题主要考查了不等式的求解,以及充分、必要条件的判定,其中解答熟记充分条件、必要条件的判定方法是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】
求出函数的导函数【详解】∵,∴.由,解得,∴函数的单调递减区间是.故选D.【点睛】利用导数求函数f(x)的单调区间的一般步骤:①确定函数f(x)的定义域;②求导数;③在函数f(x)的定义域内解不等式和;④根据③的结果确定函数f(x)的单调区间.9、C【解析】
根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【点睛】本题考查程序框图,是基础题.10、C【解析】
利用定义域的的要求可以求出A集合,利用三角函数的性质求出B集合,再计算A与B的交集的元素个数即可.【详解】集合A满足-+x+6≥0,(x-3)(x+2)≤0,-2≤x≤3,∴A={-2,-1,0,1,2,3},B=[-,],所以A∩B={-2,-1,0,1,2},可知A∩B中元素个数为5.【点睛】本题考查集合间的交集关系的求解,本题难点在于无理数与有理数的比大小,属于简单题.11、A【解析】
根据三角形面积公式可得,利用正余弦平方关系,即可求得正余弦值,由余弦定理可得.【详解】因为,,面积,所以.所以.所以,.所以.故选A.【点睛】本题考查正余弦定理,面积公式,基础题.12、C【解析】
设爵次高低分配得到的猎物数依次成等差数列{an},则,由前5项和为5求得,进一步求得d,则答案可求.【详解】设爵次高低分配得到的猎物数依次成等差数列{an},则,则,∴1,则,∴.∴大夫所得鹿数为只.故选:C.【点睛】本题考查等差数列的通项公式,考查等差数列的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用双曲线的焦点坐标,求解,然后求解双曲线的渐近线方程。【详解】双曲线的一个焦点是,可得,解得,所以双曲线的渐近线方程是故答案为:【点睛】本题考查双曲线的渐近线方程,属于基础题。14、.【解析】
设,由圆的切点弦所在直线方程可知的方程为,进而可求圆心到距离,从而求出弦长,结合已知可求出弦长的取值范围.【详解】解:设,当时,此时过点与圆相切直线的斜率,则过点与圆相切直线方程为,即,当时,,此时切线方程或满足.综上所述,过点与圆相切直线方程为;同理,过点与圆相切直线方程为,设,则直线的方程为,此时圆心到距离.所以.由可知,,则,所以.故答案为:.【点睛】本题考查了直线与圆的位置关系,考查了圆的切线,考查了弦长的求解.在圆中求解弦长时,通常是结合几何法,求出圆心到直线的距离,根据勾股定理求解弦长.15、0.1【解析】
利用正态密度曲线的对称性得出,可求出的值,再利用可得出答案.【详解】由于,由正态密度曲线的对称性可得,所以,因此,,故答案为.【点睛】本题考查正态分布在指定区间上的概率的计算,解题的关键就是充分利用正态密度曲线的对称性,利用已知区间上的概率来进行计算,考查计算能力,属于中等题.16、.【解析】
首先根据题设条件,计算,由结合可求得,由可求得,进而可求得的解析式,由分段函数的性质即可求解.【详解】,且,当,则,解得,当,则,解得,,函数在上单调递减,在上单调递增,,故的值域为.故答案为:【点睛】本题是一道考查不等式的题目,考查了分段函数的值域,解题的关键是化简解析式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①②存在,;【解析】
(1)根据椭圆离心率及过点,建立方程组,求解即可(2)①设直线的方程为:,联立椭圆方程,利用弦长公式即可求出m,得到点的坐标②直线分斜率为0与不为0两种情况讨论,斜率为0时易得存在,斜率不为0时,联立直线与椭圆方程,利用恒成立,可化简知存在定点.【详解】(1)∵椭圆:的离心率为,且过点.∴,,∴椭圆的方程为:.(2)设,,①设直线的方程为:...,.,解得.∴.②当直线的斜率为0时,,,.由可得,解得,即.当直线的斜率不为0时,设直线的方程为.由.,.由可得,,..,∴当时,上式恒成立,存在定点,使得恒成立.【点睛】本题主要考查了椭圆的标准方程,简单几何性质,直线与椭圆的位置关系,定点问题,属于难题.18、(1)H(x)单增区间为(0,1),单减区间为(1,+∞)(2)a>0【解析】
(1)求出导函数H'(x),由H'(x)>0确定增区间,由H'(x)<0确定减区间;(2)H'(x)在定义域内有零点,且在零点两侧符号相反.由此可求参数a的取值范围.【详解】(1)定义域x∈(0,+∞),∵a=1,H(x)=f(x)-g(x)=∴∴H(x)单增区间为(0,1),单减区间为(1,+∞)(2)∵H(x)=∵H(x)在(0,+∞)上不单调.∴H'(x)=0H'(x)=0得∴2a>0即a>0【点睛】本题考查用导数研究函数的单调性.函数f(x)的导函数是f'(x),一般由f'(x)>0确定增区间,由f'(x)<0确定减区间,若f'(x)在区间(a,b)内有零点,且在零点两侧符号相反,则f(x)在(a,b)上不单调.19、(1).(2)分布列见解析,.【解析】分析:(1)根据分布列的性可知所有的概率之和为1然后再根据期望的公式得到第二个方程联立求解即可;(2)根据二项分布求解即可.详解:(1)因为,所以,即.①又,得.②联立①,②解得,.(2),依题意知,故,,,.故的概率分布为的数学期望为.点睛:考查分布列的性质,二项分布,认真审题,仔细计算是解题关键,属于基础题.20、(I)(II)有的把握认为参加舞蹈兴趣班与性别有关,详见解析【解析】
(Ⅰ)画出韦恩图,计算参加舞蹈班的人数,再计算概率.(Ⅱ)补全列联表,计算,与临界值表作比较得到答案.【详解】(I)画出韦恩图得:(II)参加舞蹈兴趣班不参加舞蹈兴趣班总计男生102030女生502070总计6040100所以,有的把握认为参加舞蹈兴趣班与性别有关.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 5534-2024动植物油脂皂化值的测定
- 2024年度建筑防水工程设计与施工一体化合同
- 2024年度融资租赁合同租金计算方式与支付期限
- 2024年度建筑项目施工期调整合同2篇
- 2024年度环保设备研发制造合同
- 钢结构施工全过程课件
- 2024年度战略合作合同及商业机密保护协议
- 2024年度农田水利建设铲车租赁合同
- 2024年度工程建设项目贷款担保合同
- 2024年度网络安全服务承包转让合同
- 2024年执业医师考试-医师定期考核(人文医学)考试近5年真题集锦(频考类试题)带答案
- 指向全人发展的幼儿体育课程体系建设
- 院前急救技能竞赛(驾驶员)理论考试题库大全-上(选择题)
- 2024年银行业法律法规知识竞赛活动考试题库(含答案)
- 道法认识生命(作业)【后附答案解析】2024-2025学年七年级道德与法治上册(统编版2024)
- 9知法守法 依法维权 第2课时 守法不违法 (教学设计)-部编版道德与法治六年级上册
- 2024年手工木工职业技能竞赛理论考试题库-下(多选、判断题)
- 形势与政策智慧树知到答案2024年黑龙江农业工程职业学院
- 中国高端私人会所行业市场运营态势及发展前景研判报告
- 三方代付工程款协议书范本2024年
- 2024江苏省铁路集团限公司春季招聘24人高频考题难、易错点模拟试题(共500题)附带答案详解
评论
0/150
提交评论