版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面与平面所成的二面角是,是平面内的一条动直线,,则直线与所成角的正弦值的取值范围是()A. B.C. D.2.“夫叠棋成立积,缘幂势既同,则积不容异”是以我国哪位数学家命名的数学原理()A.杨辉 B.刘微 C.祖暅 D.李淳风3.已知随机变量服从正态分布,若,则()A. B. C. D.4.已知不等式的解集为,点在直线上,其中,则的最小值为()A.B.8C.9D.125.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米A. B.C. D.6.已知角的终边经过点,则的值等于()A. B. C. D.7.“-1≤x≤1”是“xA.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为()A. B. C. D.9.函数的大致图象是()A. B.C. D.10..已知为等比数列,,则.若为等差数列,,则的类似结论为()A. B.C. D.11.若,则等于()A.2 B.0 C.-2 D.-412.若复数满足,则=().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.=______.14.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是________.15.已知两点,,则以线段为直径的圆的方程为_____________.16.边长为2的等边三角形绕着旋转一周,所得到的几何体体积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某投资公司对以下两个项目进行前期市场调研:项目:通信设备.根据调研,投资到该项目上,所有可能结果为:获利、损失、不赔不赚,且这三种情况发生的概率分别为;项目:新能源汽车.根据调研,投资到该项目上,所有可能结果为:获利、亏损,且这两种情况发生的概率分别为.经测算,当投入两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.(1)求的值;(2)若将万元全部投到其中的一个项目,请你从投资回报稳定性考虑,为投资公司选择一个合理的项目,并说明理由.18.(12分)已知函数,函数,记集合.(I)求集合;(II)当时,求函数的值域.19.(12分)已知公差不为的等差数列的前项和,,,成等差数列,且,,成等比数列.(1)求数列的通项公式;(2)若,,成等比数列,求及此等比数列的公比.20.(12分)已知函数(1)求函数的单调递减区间;(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,求在上的值域.21.(12分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表商店名称ABCDE销售额x(千万元)35679利润额y(百万元)23345(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.(2)用最小二乘法计算利润额y对销售额x的回归直线方程.(3)当销售额为4(千万元)时,估计利润额的大小.其中22.(10分)已知函数的定义域是,关于的不等式的解集为.(1)求集合;(2)已知,,若是的必要不充分条件,试求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
假定ABCD和BCEF均为正方形,过D作,可证平面BCEF,进而可得直线BD与平面BCEF所成的角正弦值,即直线与所成角的正弦值的最小值,当直线与异面垂直时,所成角的正弦值最大.【详解】过D作,垂足为G,假定ABCD和BCEF均为正方形,且边长为1则平面CDG,故又,平面BCEF故直线BD在平面BCEF内的射影为BG,由已知可得,则以直线BD与平面BCEF所成的角正弦值,所以直线BD与平面BCEF内直线所成的角正弦值最小为,而直线与所成角最大为(异面垂直),即最大正弦值为1.故选:B【点睛】本题考查了立体几何中线面角,面面角找法,考查了转化思想,属于难题.2、C【解析】
由题意可得求不规则几何体的体积的求法,即运用祖暅原理.【详解】“夫叠棋成立积,缘幂势既同,则积不容异”的意思是“夹在两平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果两个截面面积仍然相等,那么这两个几何体的体积相等”,这就是以我国数学家祖暅命名的数学原理,故选:C.【点睛】本题考查祖暅原理的理解,考查空间几何体体积的求法,考查对概念的理解,属于基础题.3、D【解析】
随机变量服从正态分布,则,利用概率和为1得到答案.【详解】随机变量X服从正态分布,
,
答案为D.【点睛】本题考查了正态分布,利用正态分布的对称性是解决问题的关键.4、C【解析】试题解析:依题可得不等式的解集为,故,所以即,又,则当且仅当时上式取等号,故选C考点:分式不等式的解法,基本不等式的应用5、D【解析】分析:由已知可得水对应的几何体是一个以截面中阴影部分为底,以9为高的柱体,求出底面面积,代入柱体体积公式,可得答案.详解:由已知中罐子半径是4米,水深2米,故截面中阴影部分的面积S=平方米,又由圆柱形的罐子的高h=9米,故水的体积V=Sh=48立方米,故选D.点睛:本题考查的知识点是柱体的体积公式,扇形面积公式,弓形面积公式,难度中档.6、A【解析】
由三角函数的定义可求出的值.【详解】由三角函数的定义可得,故选A.【点睛】本题考查三角函数的定义,解题的关键在于三角函数的定义进行计算,考查计算能力,属于基础题.7、A【解析】
首先画出函数y=x+1+x-1的图像,求解不等式【详解】如图:y=x+1由图像可知x+1+x-1≥2恒成立,所以解集是R,x-1≤x≤1是R的真子集,所以“故选A.【点睛】本题考查了充分不必要条件的判断,属于基础题型.8、B【解析】
设出大正方形的面积,求出阴影部分的面积,从而求出满足条件的概率即可.【详解】设“东方魔板”的面积是4,
则阴影部分的三角形面积是1,
阴影部分平行四边形的面积是则满足条件的概率故选:B【点睛】本题考查了几何概型问题,考查面积之比,是一道基础题.9、C【解析】
根据特殊位置的所对应的的值,排除错误选项,得到答案.【详解】因为所以当时,,故排除A、D选项,而,所以即是奇函数,其图象关于原点对称,故排除B项,故选C项.【点睛】本题考查根据函数的解析式判断函数图象,属于简单题.10、D【解析】
根据等差数列中等差中项性质推导可得.【详解】由等差数列性质,有==…=2.易知选项D正确.【点睛】等差中项和等比中项的性质是出题的热点,经常与其它知识点综合出题.11、D【解析】
先求导,算出,然后即可求出【详解】因为,所以所以,得所以,所以故选:D【点睛】本题考查的是导数的计算,较简单.12、D【解析】
先解出复数,求得,然后计算其模长即可.【详解】解:因为,所以所以所以故选D.【点睛】本题考查了复数的综合运算,复数的模长,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
试题分析:.考点:对数的运算.14、①②④.【解析】
①根据古典概型概率公式结合组合知识可得结论;②根据二项分布的方差公式可得结果;③根据条件概率进行计算可得到第二次再次取到红球的概率;④根据对立事件的概率公式可得结果.【详解】①从中任取3个球,恰有一个白球的概率是,故①正确;②从中有放回的取球次,每次任取一球,取到红球次数,其方差为,故②正确;③从中不放回的取球次,每次任取一球,则在第一次取到红球后,此时袋中还有个红球个白球,则第二次再次取到红球的概率为,故③错误;④从中有放回的取球3次,每次任取一球,每次取到红球的概率为,至少有一次取到红球的概率为,故④正确,故答案为①②④.【点睛】本题主要考查古典概型概率公式、对立事件及独立事件的概率及分二项分布与条件概率,意在考查综合应用所学知识解决问题的能力,属于中档题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.15、【解析】
根据中点坐标公式求圆心为(1,1),求两点间距离公式求AB的长并得出半径为,写出圆的标准方程即可。【详解】直径的两端点分别为(0,1),(1,0),∴圆心为(1,1),半径为,故圆的方程为(x﹣1)1+(y﹣1)1=1.故答案为:(x﹣1)1+(y﹣1)1=1.【点睛】在确定圆的方程时,选择标准方程还是一般方程需要灵活选择,一般情况下易于确定圆或半径时选择标准方程,给出条件是几个点的坐标时,两种形式都可以。此题选择标准形式较简单。16、【解析】
根据题意可知:该几何体是有公共底面的两个一样的圆锥,利用圆锥的体积公式求解即可.【详解】根据题意可知:该几何体是有公共底面的两个一样的圆锥,等边三角形的高为,底面半径为,所以所得到的几何体体积为.故答案为【点睛】本题考查了按平面图形一边旋转所形成的空间图形的体积问题,考查了空间想象能力,考查了数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,;(2)从风险控制角度,建议该投资公司选择项目.【解析】
(1)根据概率和为1列方程求得的值,再利用分布列和数学期望列方程组求得、的值;(2)计算均值与方差,比较即可得出结论.【详解】(1)依题意,,,设投入到项目的资金都为万元,变量和分别表示投资项目和所获得的利润,则和的分布列分别为由分布列得,,因为所以,即,又,解得,;,,(2)当投入万元资金时,由(1)知,所以,,,因为,说明虽然项目和项目的平均收益相等,但项目更稳妥,所以,从风险控制角度,建议该投资公司选择项目.【点睛】本题主要考查了离散型随机变量的分布列与数学期望和方差的计算问题,是中档题.18、(1)(2)【解析】
(Ⅰ)由g(x)≤0得42x﹣5•22x+1+16≤0,然后利用换元法解一元二次不等式即可得答案;(Ⅱ)化简函数f(x),然后利用换元法求解即可得答案.【详解】解:(I)即,,令,即有得,,,解得;(II),令则,二次函数的对称轴,【点睛】本题考查了指、对数不等式的解法,考查了会用换元法解决数学问题,属于中档题.19、(1);(2),公比.【解析】试题分析:(1)由题意得到关于首项、公差的方程,解方程可得,则数列的通项公式为;(2)由(1)知,则,,结合等比数列的性质可得,公比.试题解析:(1)设数列的公差为由题意可知,整理得,即,所以;(2)由(1)知,∴,∴,,又,∴,∴,公比.20、(1)减区间;(2)【解析】
(1)由二倍角公式及辅助角公式将函数化为的形式,令处于的递减区间内,求出x的范围即可;(2)由三角函数图像平移变换法则,求出新函数的解析式,结合的图像求出值域.【详解】(1)∵,由,解出,所以的减区间为
(2)因为将左移得到,横坐标缩短为原来的,得到∵,所以所求值域为【点睛】本题考查三角函数图像的平移及伸缩变换以及单调区间和给定区间上的值域,平移时注意将系数提公因式后对x进行加减,求值域时注意结合函数图像会使得解题更加简便.21、(1)见解析(2)(3)2.4(百万元)【解析】
(1)根据所给的这一组数据,得到5个点的坐标,把这几个点的坐标在直角坐标系中描出对于的点,即可得到散点图,可判断为正相关;(2)根据这组数据,利用最小二乘法求得的值,即可求解回归直线的方程;(3)利用作出的回归直线方程,把的值代入方程,估计出对应的的值.【详解】(1)根据所给的这一组数据,得到5个点的坐标:,把这几个点的坐标在直角坐标系中描出对应的点,得到如下的散点图:(2)设回归直线的方程是:,由表格中的数据,可得,又由,即∴y对销售额x的回归直线方程为(3)当销售额为4(千万元)时,利润额为:=2.4(百万元).【点睛】本题主要考查了回归直线方程的求解及其应用,其中解答中正确求得线性回归直线的方程的系数是解答的关键,着重考查了推理与运算能力,属于中档试题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论