2023届辽宁省阜新市第二高级中学数学高二第二学期期末统考试题含解析_第1页
2023届辽宁省阜新市第二高级中学数学高二第二学期期末统考试题含解析_第2页
2023届辽宁省阜新市第二高级中学数学高二第二学期期末统考试题含解析_第3页
2023届辽宁省阜新市第二高级中学数学高二第二学期期末统考试题含解析_第4页
2023届辽宁省阜新市第二高级中学数学高二第二学期期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设0<p<1,随机变量X,Y的分布列分别为()X123Pp1-pp-Y123Pp1-p当X的数学期望取得最大值时,Y的数学期望为()A.2 B.3316 C.55272.设全集,,集合,则集合()A. B. C. D.3.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段。下表为10名学生的预赛成绩,其中有些数据漏记了(见表中空白处)学生序号12345678910立定跳远(单位:米)1.961.681.821.801.601.761.741.721.921.7830秒跳绳(单位:次)63756062727063在这10名学生中进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则以下判断正确的为()A.4号学生一定进入30秒跳绳决赛B.5号学生一定进入30秒跳绳决赛C.9号学生一定进入30秒跳绳决赛D.10号学生一定进入30秒眺绳决赛4.已知复数,若,则实数的值为()A. B.6 C. D.5.已知,,,则的最大值为()A.1 B. C. D.6.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx,,则f(x)()A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值,又有极小值 D.既无极大值,又无极小值7.某中学高二年级的一个研究性学习小组拟完成下列两项调查:①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;②从本年级12名体育特长生中随机选出5人调查其学习负担情况;则该研究性学习小组宜采用的抽样方法分别是()A.①用系统抽样,②用简单随机抽样 B.①用系统抽样,②用分层抽样C.①用分层抽样,②用系统抽样 D.①用分层抽样,②用简单随机抽样8.若是关于的实系数一元二次方程的一个根,则()A., B.,C., D.,9.已知随机变量X的分布列表如下表,且随机变量,则Y的期望是()X-101mA. B. C. D.10.直线的倾斜角的大小为()A. B. C. D.11.一工厂生产某种产品的生产量(单位:吨)与利润(单位:万元)的部分数据如表所示:从所得的散点图分析可知,与线性相关,且回归方程为,则()A. B. C. D.12.设,则的值为()A.2 B.0 C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.展开式中不含项的系数的和为_________.14.设满足约束条件,则的最大值为.15.从1、3、5、7中任取2个数字,从0、2、4、6中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有________个.(用数字作答)16.lg5+1g20+e0的值为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙两队进行防溺水专题知识竞赛,每队3人,首轮比赛每人一道必答题,答对者则为本队得1分,答错或不答得0分,己知甲队每人答对的概率分别为,,,乙队每人答对的概率均为.设每人回答正确与否互不影响,用表示首轮比赛结束后甲队的总得分.(1)求随机变量的分布列;(2)求在首轮比赛结束后甲队和乙队得分之和为2的条件下,甲队比乙队得分高的概率.18.(12分)已知函数f(x)=ex,g(x)=lnx.(1)设f(x)在x1处的切线为l1,g(x)在x2处的切线为l2,若l1//l2,求x1+g(x2)的值;(2)若方程af2(x)-f(x)-x=0有两个实根,求实数a的取值范围;(3)设h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.19.(12分)已知函数f(x)=sin+cos,x∈R.(1)求函数f(x)的最小正周期,并求函数f(x)在x∈[﹣2π,2π]上的单调递增区间;(2)函数f(x)=sinx(x∈R)的图象经过怎样的平移和伸缩变换可以得到函数f(x)的图象.20.(12分)设函数在时取得极值.(1)求a的值;(2)求函数的单调区间.21.(12分)命题:函数的两个零点分别在区间和上;命题:函数有极值.若命题,为真命题的实数的取值集合分别记为,.(1)求集合,;(2)若命题“且”为假命题,求实数的取值范围.22.(10分)如图,四棱锥中,底面ABCD为矩形,侧面为正三角形,且平面平面E为PD中点,AD=2.(1)证明平面AEC丄平面PCD;(2)若二面角的平面角满足,求四棱锥的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

先利用数学期望公式结合二次函数的性质得出EX的最小值,并求出相应的p,最后利用数学期望公式得出EY的值。【详解】∵EX=p∴当p=14时,EX取得最大值.此时EY=-2p【点睛】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题。2、B【解析】由题得,,所以,,故选B.3、D【解析】

先确定立定跳远决赛的学生,再讨论去掉两个的可能情况即得结果【详解】进入立定跳远决赛的学生是1,3,4,6,7,8,9,10号的8个学生,由同时进入两项决赛的有6人可知,1,3,4,6,7,8,9,10号有6个学生进入30秒跳绳决赛,在这8个学生的30秒跳绳决赛成绩中,3,6,7号学生的成绩依次排名为1,2,3名,1号和10号成绩相同,若1号和10号不进入30秒跳绳决赛,则4号肯定也不进入,这样同时进入立定跳远决赛和30秒跳绳决赛的只有5人,矛盾,所以1,3,6,7,10号学生必进入30秒跳绳决赛.选D.【点睛】本题考查合情推理,考查基本分析判断能力,属中档题.4、D【解析】

根据题目复数,且,利用复数的除法运算法则,将复数z化简成的形式,再令虚部为零,解出的值,即可求解出答案.【详解】,∵,∴,则.故答案选D.【点睛】本题主要考查了利用复数的除法运算法则化简以及根据复数的概念求参数.5、D【解析】

直接使用基本不等式,可以求出的最大值.【详解】因为,,,所以有,当且仅当时取等号,故本题选D.【点睛】本题考查了基本不等式的应用,掌握公式的特征是解题的关键.6、D【解析】因为xf′(x)-f(x)=xlnx,所以,所以,所以f(x)=xln2x+cx.因为f()=ln2+c×=,所以c=,所以f′(x)=ln2x+lnx+=(lnx+1)2≥0,所以f(x)在(0,+∞)上单调递增,所以f(x)在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如构造,构造,构造,构造等7、D【解析】

①总体由差异明显的几部分构成时,应选用分层抽样;②总体个体数有限、逐个抽取、不放回、每个个体被抽到的可能性均等,应选用简单随机抽样;∴选D8、B【解析】

由题意可知,关于的实系数一元二次方程的两个虚根分别为和,然后利用韦达定理可求出实数与的值.【详解】由题意可知,关于的实系数一元二次方程的两个虚根分别为和,由韦达定理得,解得.故选B.【点睛】本题考查利用实系数方程的虚根求参数,解题时充分利用实系数方程的两个虚根互为共轭复数这一性质,并结合韦达定理求解,也可以将虚根代入方程,利用复数相等来求解,考查运算求解能力,属于中等题.9、A【解析】

由随机变量X的分布列求出m,求出,由,得,由此能求出结果.【详解】由随机变量X的分布列得:,解得,,,.故选:A.【点睛】本题考查离散型随机变量的数学期望的求法,考查离散型随机变量的分布列、数学期望的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10、B【解析】

由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.11、C【解析】

根据表格中的数据计算出和,再将点的坐标代入回归直线方程可求出实数的值.【详解】由题意可得,,由于回归直线过样本中心点,则有,解得,故选:C.【点睛】本题考查利用回归直线方程求原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.12、C【解析】

分别令和即可求得结果.【详解】令,可得:令,可得:故选【点睛】本题考查二项展开式系数和的相关计算,关键是采用赋值的方式构造出所求式子的形式.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】分析:由题意结合二项式定理展开式的通项公式整理计算即可求得最终结果.详解:由二项式展开式的通项公式可知展开式的通项公式为:,令可知的系数为:,中,令可知展开式的系数和为:,据此可知:不含项的系数的和为.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.14、5.【解析】.试题分析:约束条件的可行域如图△ABC所示.当目标函数过点A(1,1)时,z取最大值,最大值为1+4×1=5.【考点】线性规划及其最优解.15、1【解析】

题目要求得到能被5整除的数字,注意0和5的排列,分三种情况进行讨论,四位数中包含5和0的情况,四位数中包含5,不含0的情况,四位数中包含0,不含5的情况,根据分步计数原理得到结果.【详解】解:①四位数中包含5和0的情况:.②四位数中包含5,不含0的情况:.③四位数中包含0,不含5的情况:.四位数总数为.故答案为:1.【点睛】本题是一个典型的排列问题,数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏,属于中档题.16、【解析】

利用对数与指数的运算性质,即可求解,得到答案.【详解】由题意,可得,故答案为3.【点睛】本题主要考查了对数的运算性质,以及指数的运算性质的应用,着重考查了运算与求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析;(2)【解析】

(1)的所有可能取值为0、1、2、3,求出对应的概率即可;(2)先求出甲、乙两队得分之和为2分的概率,再通过条件概率的计算公式求出甲队比乙队得分高的概率.【详解】(1)的所有可能取值为0、1、2、3,,,,故的分布列为0123P(2)记事件A表示“甲、乙两队得分之和为2分”,事件B表示“甲队比乙队得分高”,则,,所以,所以,在首轮比赛结束后甲队和乙队得分之和为2的条件下,甲队比乙队得分高的概率.【点睛】本题考查离散型随机变量的分布列,考查条件概率的求解,是中档题.18、(1)0.(2)0<a<1.(3)b≥ln2+.【解析】分析:(1)求导,利用l1//l2时k值相等,即可求出答案;(2)参变分离,利用导数的应用以及数形结合即可得到答案;(3)由题意h(x)=f(x)(g(x)-b)=ex(lnx-b),求导,因为h(x)在[ln2,ln3]内单调递减,所以在[ln2,ln3]上恒成立,再参变分离,分析讨论即可.详解:(1)f′(x)=ex,g′(x)=由题意知:=故x1+g(x2)=x1-ln=0.(2)方程af2(x)-f(x)-x=0,ae2x-ex-x=0,a=令φ(x)=,则φ′(x)=-当x<0时,ex<1,ex-1<0,所以ex+2x-1<0,所以φ′(x)>0,故φ(x)单调增;当x>0时,ex>1,ex-1>0,所以ex+2x-1>0,所以φ′(x)<0,故φ(x)单调减.从而φ(x)max=φ(0)=1又,当x>0时,φ(x)=>0原方程有两个实根等价于直线y=a与φ(x)的图像有两个交点,故0<a<1.(3)由题意h(x)=f(x)(g(x)-b)=ex(lnx-b),得h′(x)=ex(lnx+-b)因为h(x)在[ln2,ln3]内单调递减,所以h′(x)=ex(lnx+-b)≤0在[ln2,ln3]内恒成立由于ex>0,故只需lnx+-b≤0在[ln2,ln3]内恒成立即b≥lnx+在[ln2,ln3]内恒成立令t(x)=lnx+,t′(x)=-=当ln2≤x<1时,t′(x)<0,故t(x)单调减;当1≤x≤ln3时,t′(x)>0,故t(x)单调增.下面只要比较t(ln2)与t(ln3)的大小.思路:[详细过程略]先证明:x1+x2>2又,ln2+ln3=ln6<2故当x1=ln2时,ln3<x2即t(ln3)<t(ln2)所以t(x)max=t(ln2)=ln2+所以b≥ln2+.点睛:由函数的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)(f′(x)在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.19、(1)函数f(x)在x∈[﹣2π,2π]上的单调递增区间是[,].(2)见解析【解析】试题分析:将f(x)化为一角一函数形式得出f(x)=2sin(),(1)利用≤≤,且x∈[﹣2π,2π],对k合理取值求出单调递增区间(2)该函数图象可由y=sinx的图象,先向左平移,再图象上每个点的横坐标变为原来的2倍,纵坐标变为原来的2倍,,即得到函数y=2sin()解:f(x)=sin+cos=2sin()(1)最小正周期T==4π.令z=,函数y=sinz的单调递增区间是[,],k∈Z.由≤≤,得+4kπ≤x≤+4kπ,k∈Z.取k=0,得≤x≤,而[,]⊂[﹣2π,2π]函数f(x)在x∈[﹣2π,2π]上的单调递增区间是[,].(2)把函数y=sinx图象向左平移,得到函数y=sin(x+)的图象,再把函数y=sin(x+)的图象上每个点的横坐标变为原来的2倍,纵坐标不变,得到函数y=sin()的图象,然后再把每个点的纵坐标变为原来的2倍,横坐标不变,即得到函数y=2sin()的图象.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;函数y=Asin(ωx+φ)的图象变换.20、(1)3;(2)的单调递增区间为;单调递减区间为(1,2).【解析】

(1)根据极值的定义,列出方程,求出的值并进行验证;(2)利用导数的正负求单调区间.【详解】(1),当时取得极值,则,即:,解得:,经检验,符合题意.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论