




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知一次函数的图像与轴,轴分别交于,两点,与反比例函数在第一象限内的图像交于点,且为的中点,则一次函数的解析式为()A. B. C. D.2.若,,,是直线上的两点,当时,有,则的取值范围是A. B. C. D.3.函数与在同一坐标系内的图像可能是()A. B.C. D.4.若一个多边形的内角和为外角和的3倍,则这个多边形为()A.八边形 B.九边形 C.十边形 D.十二边形5.如果(2a-1)2=1-2a,则A.a<12B.a≤126.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图像是()A. B.C. D.7.下列图形中,不是中心对称图形的是()A.平行四边形 B.矩形 C.菱形 D.等边三角形8.下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是()A.48 B.63 C.80 D.999.若在实数范围内有意义,则a的取值范围是()A.a≥ B.a≤ C.a> D.a<10.小强同学投掷30次实心球的成绩如下表所示:由上表可知小强同学投掷30次实心球成绩的众数与中位数分别是()A.12m,11.9m B.12m,12.1m C.12.1m,11.9m D.12.1m,12m二、填空题(每小题3分,共24分)11.一个弹簧不挂重物时长,挂上重物后伸长的长度与所挂重的质量成正比。如果挂上的质量后弹簧伸长,则弹簧的总长(单位:)关于所挂重物(单位:)的函数解析式是_________.12.▱ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_____cm.13.有一组数据如下:3、7、4、6、5,那么这组数据的方差是_____.14.如果a+b=8,a﹣b=﹣5,则a2﹣b2的值为_____.15.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.16.如图,在矩形中,对角线与相交于点,,,则的长为________.17.如图中的螺旋由一系列直角三角形组成,则第2019个三角形的面积为_______.18.二次三项式是一个完全平方式,则k=_______.三、解答题(共66分)19.(10分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.20.(6分)计算下列各题(1)(2)21.(6分)(1)因式分解:2a3﹣8a2+8a;(2)解不等式组,并把解集在数轴上表示出来.22.(8分)如图,过轴正半轴上一点的两条直线,分别交轴于点、两点,其中点的坐标是,点在原点下方,已知.(1)求点的坐标;(2)若的面积为,求直线的解析式.23.(8分)解方程(1)+=3(2)24.(8分)如图,▱ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.(1)求证:四边形BFDE是平行四边形;(2)若∠AEB=68°,求∠C.25.(10分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.(1)若∠F=62°,求∠D的度数;(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.26.(10分)(1)如图1,方格纸中的每个小方格都是边长为1个单位的正方形,的顶点以及点均在格点上.①直接写出的长为______;②画出以为边,为对角线交点的平行四边形.(2)如图2,画出一个以为对角线,面积为6的矩形,且和均在格点上(、、、按顺时针方向排列).(3)如图3,正方形中,为上一点,在线段上找一点,使得.(要求用无刻度的直尺画图,不准用圆规,不写作法,保留画图痕迹)
参考答案一、选择题(每小题3分,共30分)1、B【解析】
先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C点坐标代入y=kx-4即可得到k的值,即可得到结论.【详解】把x=0代入y=kx−4得y=−4,则B点坐标为(0,−4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入y=得x=2,∴C点坐标为(2,4),把C(2,4)代入y=kx−4得2k−4=4,解得k=4,∴一次函数的表达式为y=4x−4,故选:B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出k值2、B【解析】
x1<x2时,有y1>y2,说明y随x的最大而减小,即可求解.【详解】时,有,说明随的最大而减小,则,即,故选.【点睛】本题考查的是一次函数图象上点的坐标特征,主要分析y随x的变化情况即可.3、B【解析】
分k>0与k<0两种情况分别进行讨论即可得.【详解】当k>0时,y=kx-1的图象过一、三、四象限,的图象位于第一、三象限,观察可知选项B符合题意;当k<0时,y=kx-1的图象过二、三、四象限,的图象位于第二、四象限,观察可知没有选项符合题意,故选B.【点睛】本题考查了反比例函数图象与一次函数图象的结合,熟练掌握反比例函数的图象与性质以及一次函数的图象与性质是解题的关键.4、C【解析】
设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4,解方程可得.【详解】解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4n-2=8解得:n=10所以,这是个十边形故选C.【点睛】本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.5、B【解析】试题分析:根据二次根式的性质1可知:(2a-1)2=|2a-1|=1-2a,即2a-1≤0故答案为B.考点:二次根式的性质.6、A【解析】
首先判断出函数的横、纵坐标所表示的意义,然后再根据题意进行解答.【详解】纵坐标表示的是速度、横坐标表示的是时间;由题意知:小明的走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项;故选A.【点睛】本题应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.7、D【解析】
根据中心对称图形的概念中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A、平行四边形是中心对称图形,故本选项错误;B、矩形是中心对称图形,故本选项错误;C、菱形是中心对称图形,故本选项错误;D、等边三角形不是中心对称图形,故本选项正确.故选D.8、C【解析】
解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.【点睛】本题考查了规律型---图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.9、A【解析】
直接利用二次根式有意义则2a+3≥0,进而得出答案.【详解】解:在实数范围内有意义,则2a+3≥0,解得:.故选:A.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.10、D【解析】
根据众数和中位数的定义分别进行判断即得答案.【详解】解:由表可知:12.1出现了10次,出现的次数最多,所以小强同学投掷30次实心球成绩的众数是12.1m,把这些数从小到大排列,最中间的第15、16个数是12、12,则中位数是12+122=12(m【点睛】本题考查众数和中位数的概念,众数是指一组数据中出现次数最多的数据,而中位数是指将一组数据按从小(大)到大(小)的顺序排列起来,位于最中间的数(或最中间两个数的平均数).具体判断时,切勿将表中的“成绩”与“频数”混淆,从而做出错误判断.二、填空题(每小题3分,共24分)11、【解析】
弹簧总长弹簧原来的长度挂上重物质量时弹簧伸长的长度,把相关数值代入即可.【详解】解:挂上的物体后,弹簧伸长,挂上的物体后,弹簧伸长,弹簧总长.故答案为:.【点睛】本题考查了由实际问题抽象一次函数关系式的知识,得到弹簧总长的等量关系是解决本题的关键.12、1.【解析】
首先根据平行四边形基本性质,AE⊥BD,∠EAD=60°,可得∠ADE=30°,然后再根据直角三角形的性质可得AD=2AE=4cm,再根据四边形ABCD是平行四边形可得AO=CO,BO=DO,BC=AD=4cm,进而求出BO+CO的长,然后可得△OBC的周长.【详解】∵AE⊥BD,∠EAD=60°,∴∠ADE=30°,∴AD=2AE=4cm,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,BC=AD=4cm,∵AC+BD=14cm,∴BO+CO=7cm,∴△OBC的周长为:7+4=1(cm),故答案为1【点睛】本题考查平行四边形的基本性质,解题关键在于根据直角三角形的性质得出AD=2AE=4cm13、1【解析】试题分析:平均数为:(3+7+4+6+5)÷5=5,S1=×[(3﹣5)1+(7﹣5)1+(4﹣5)1+(6﹣5)1+(5﹣5)1]=×(4+4+1+1+0)=1.故答案为1.点睛:本题考查方差的定义:一般地,设n个数据x1,x1,…xn的平均数为,则方差S1=[(x1-)1+(x1-)1+…+(xn-)1],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、-1【解析】
根据平方差公式求出即可.【详解】解:∵a+b=8,a﹣b=﹣5,∴a2﹣b2=(a+b)(a﹣b)),=8×(﹣5),=﹣1,故答案为:﹣1.【点睛】本题主要考查了乘法公式的应用,准确应用平方差公式和完全平方公式是解题的关键.15、【解析】
如图,在Rt△ADF和Rt△AEF中,AD=AE,AF=AF,∴≌(),故,因为是正方形的对角线,故,故∠FAD=22.5°,故答案为22.5.16、【解析】
根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可.【详解】∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠BAD=90°,∵∴△AOB是等边三角形,∴OB=AB=1,∴BD=2BO=2,在Rt△BAD中,故答案为【点睛】考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.17、【解析】
根据勾股定理逐一进行计算,从中找到规律,即可得到答案.【详解】第一个三角形中,第二个三角形中,第三个三角形中,…第n个三角形中,当时,故答案为:.【点睛】本题主要考查勾股定理及三角形面积公式,掌握勾股定理,找到规律是解题的关键.18、±6【解析】
根据完全平方公式的展开式,即可得到答案.【详解】解:∵是一个完全平方式,∴;故答案为:.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式的展开式.三、解答题(共66分)19、(1)k=11,B(2,1);(1)D1(3,1)或D1(3,2)或D3(3,-1).【解析】
(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=2代入反比例函数解析式求得相应的y的值,即得点B的坐标;(1)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.【详解】(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=11,故该反比例函数解析式为:y=.∵点C(2,0),BC⊥x轴,∴把x=2代入反比例函数y=,得y==1.则B(2,1).综上所述,k的值是11,B点的坐标是(2,1).(1)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(2,1)、C(2,0),∴点D的横坐标为3,yA-yD=yB-yC即4-yD=1-0,故yD=1.所以D(3,1).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(2,1)、C(2,0),∴点D的横坐标为3,yD′-yA=yB-yC即yD-4=1-0,故yD′=2.所以D′(3,2).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.∵A(3,4)、B(2,1)、C(2,0),∴xD″-xB=xC-xA即xD″-2=2-3,故xD″=3.yD″-yB=yC-yA即yD″-1=0-4,故yD″=-1.所以D″(3,-1).综上所述,符合条件的点D的坐标是:(3,1)或(3,2)或(3,-1).【点睛】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(1)题时,采用了“数形结合”和“分类讨论”的数学思想.20、(1)1;(2)-12+4.【解析】
(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=(4-2)÷2=2÷2=1;(2)原式=5-3-(12-4+2)=2-14+4=-12+4.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.21、(1);(2)1≤x<4,见解析【解析】
(1)直接提取公因式2a,进而利用完全平方公式分解因式得出答案;(2)分别解不等式进而得出不等式组的解集,在数轴上表示即可.【详解】解:(1)原式=,故答案为:;(2)由题意知,解不等式:,得:x≥1,解不等式:,去分母得:,移项得:,解得:x<4,∴不等式组的解集为:1≤x<4,故答案为:1≤x<4,在数轴上表示解集如下所示:.【点睛】本题考查了因式分解、一元一次不等式组的解法,熟练掌握因式分解的方法及一元一次不等式的解法是解决本题的关键.22、(1)A(2,0);(2)直线解析式.【解析】
(1)利用勾股定理即可解题,(2)根据的面积为,得到,得到C(0,-1),再利用待定系数法即可解题.【详解】(1)∵OB=3,,∠AOB=90°∴OA=2,(勾股定理)∴A(2,0)(2)∵∴BC=4∴C(0,-1)∴设直线解析式y=kx+b(k0)∴,解得∴直线解析式.【点睛】本题考查了一次函数与面积的实际应用,勾股定理的应用,用待定系数法求解函数解析式,中等难度,将面积问题转换成求点的坐标问题是解题关键.23、(1)x=;(2)x=1【解析】
(1)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;(2)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;【详解】(1)+=33-2=3(2x-2)1=6x-6x=,当x=时,2x-2≠0,所以x=是方程的解;(2)x-3+2(x+3)=6x-3+2x+6=63x=3x=1.当x=1时,x2-9≠0,所以x=1是方程的解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24、(1)见解析;(2)∠C=44°.【解析】
(1)由平行四边形的性质及角平分线的性质可得AB=AE,CF=CD,进而可得四边形EBFD是平行四边形,即可得出结论;(2)根据平行线的性质和角平分线的定义即可得到结论.【详解】(1)证明:在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,又BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,即AB=AE,同理CF=CD,又AB=CD,∴CF=AE,∴BF=DE,∴四边形EBFD是平行四边形;(2)解:∵∠AEB=68°,AD∥BC,∴∠EBF=∠AEB=68°,∵BE平分∠ABC,∴∠ABC=2∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 县关于快递市场管理制度
- 公司招投标代理管理制度
- 月季养护全年管理制度
- 皮炎湿疹的诊断与治疗讲课件
- 巷道掘进基础知识 巷道断面内水沟和管线布置
- 高中思想政治课教学法探析
- 内镜治疗的附件讲课件
- 2024北京一零一中高一(下)期末政治(等级考)试题及答案
- 静脉治疗操作规程课件讲课件
- 药物性皮炎常见护理诊断讲课件
- 地理撒哈拉以南非洲课件-2024-2025学年人教版(2024)初中地理七年级下册
- 四川省2024普通高校招生本科一批调档线(理科)
- 基于机器学习的精准灌溉效率提升方法-全面剖析
- 1策略导航智慧备考-2025年中考英语复习略谈 课件【2025年陕西省初中学业水平考试研讨会】2
- 2025年正压式呼吸器试题及答案
- 2025年保安证考试知识测试试题及答案
- 2025年保安证重点试题及答案
- 带式运输机传动装置设计说明书-xlj
- 电力公司安全生产月
- 中小学生禁毒演课件
- 2025春期国家开放大学《中国近现代史纲要》专题测试1-8答案
评论
0/150
提交评论