版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从,,中任取个不同的数字,从,,中任取个不同的数字,可以组成没有重复数字的四位偶数的个数为()A. B. C. D.2.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知函数在其定义域内既有极大值也有极小值,则实数的取值范围是()A. B. C. D.4.曲线对称的曲线的极坐标方程是()A. B. C. D.5.已知函数,若有两个极值点,,且,则的取值范围是()A. B. C. D.6.数学归纳法证明1n+1+1A.12k+2 B.12k+1 C.17.以下四个命题,其中正确的个数有()①由独立性检验可知,有的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程中,当解释变量每增加一个单位时,预报变量平均增加0.2个单位;④对分类变量与,它们的随机变量的观测值来说,越小,“与有关系”的把握程度越大.A.1 B.2 C.3 D.48.函数的单调递减区间是()A. B. C., D.,9.函数的定义城是()A. B. C. D.10.已知三棱锥的体积为,,,,,且平面平面PBC,那么三棱锥外接球的体积为()A. B. C. D.11.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为奇数},B={两次的点数之和小于7},则PBA.13 B.49 C.512.已知,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正三棱锥底面边长为,侧棱长为,则它的侧面与底面所成二面角的余弦值为________.14.已知向量与的夹角为120°,且,,则__________.15.在中,内角,,满足,且,则的值为________.16.某几何体的三视图如图所示,则它的体积是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求曲线在处的切线方程;(2)若恒成立,求实数的取值范围.18.(12分)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.分数[50,59)[60,69)[70,79)[80,89)[90,100]甲班频数56441乙班频数13655(1)由以上统计数据填写下面2×2列联表,并判断“成绩优良与教学方式是否有关”?甲班乙班总计成绩优良成绩不优良总计现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.附:.临界值表19.(12分)已知数列满足:,(R,N*).(1)若,求证:;(2)若,求证:.20.(12分)设,函数,是函数的导函数,是自然对数的底数.(1)当时,求导函数的最小值;(2)若不等式对任意恒成立,求实数的最大值;(3)若函数存在极大值与极小值,求实数的取值范围.21.(12分)设集合,如果存在的子集,,同时满足如下三个条件:①;②,,两两交集为空集;③,则称集合具有性质.(Ⅰ)已知集合,请判断集合是否具有性质,并说明理由;(Ⅱ)设集合,求证:具有性质的集合有无穷多个.22.(10分)已知复数.(1)化简:;(2)如果,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据选取的两个偶数是否包含0分为两种情况,种数相加得到答案.【详解】选取的两个偶数不包含0时:选取的两个偶数包含0时:故共有96个偶数答案选A【点睛】本题考查了排列组合,将情况分类可以简化计算.2、A【解析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.3、D【解析】
根据函数在其定义域内既有极大值也有极小值,则.在有两个不相等实根求解.【详解】因为所以.因为函数在其定义域内既有极大值也有极小值,所以只需方程在有两个不相等实根.即,令,则.在递增,在递减.其图象如下:∴,∴.故选::D.【点睛】本题主要考查了导数与函数的极值,还考查了数形结合的思想方法,属于中档题.4、A【解析】
先把两曲线极坐标方程化为普通方程,求得对称曲线,再转化为极坐标方程。【详解】化为标准方程可知曲线为,曲线为,所以对称直线为,化为极坐标方程为,选A.【点睛】由直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。5、C【解析】
由可得,根据极值点可知有两根,等价于与交于两点,利用导数可求得的最大值,同时根据的大小关系构造方程可求得临界状态时的取值,结合单调性可确定的取值范围.【详解】,,令可得:.有两个极值点,有两根令,则,当时,;当时,,在上单调递增,在上单调递减,,令,则,解得:,此时.有两根等价于与交于两点,,即的取值范围为.故选:.【点睛】本题考查根据函数极值点个数及大小关系求解参数范围的问题,关键是明确极值点和函数导数之间的关系,将问题转化为直线与曲线交点问题的求解.6、D【解析】
求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【详解】当n=k时,左边的代数式为1k+1当n=k+1时,左边的代数式为1k+2故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:12k+1【点睛】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n=k到n=k+1项的变化,属于中档题.7、B【解析】对于命题①认为数学成绩与物理成绩有关,不出错的概率是99%,不是数学成绩优秀,物理成绩就有99%的可能优秀,不正确;对于④,随机变量K2的观测值k越小,说明两个相关变量有关系的把握程度越小,不正确;容易验证②③正确,应选答案B。8、A【解析】
函数的单调减区间就是函数的导数小于零的区间,可以求出函数的定义域,再算出函数的导数,最后解不等式,可得出函数的单调减区间.【详解】解:因为函数,所以函数的定义域为,求出函数的导数:,;令,,解得,所以函数的单调减区间为故选:.【点睛】本题考查了利用导数研究函数的单调性,属于简单题,在做题时应该避免忽略函数的定义域而导致的错误.9、C【解析】
根据对数的真数大于零这一原则得出关于的不等式,解出可得出函数的定义域.【详解】由题意可得,解得,因此,函数的定义域为,故选C.【点睛】本题考查对数型函数的定义域的求解,求解时应把握“真数大于零,底数大于零且不为”,考查计算能力,属于基础题.10、D【解析】试题分析:取中点,连接,由知,则,又平面平面,所以平面,设,则,又,则,,,,显然是其外接球球心,因此.故选D.考点:棱锥与外接球,体积.11、D【解析】由题意得P(B|A)=P(AB)P(A),两次的点数均为奇数且和小于7的情况有(1,1),(1,3),(3,1),(1,5),(5,1)(3,3),则P(AB)=612、B【解析】
直接利用诱导公式以及同角三角函数基本关系式转化求解即可.【详解】解:因为,则.故选:B.【点睛】本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先做出二面角的平面角,再运用余弦定理求得二面角的余弦值.【详解】取正三棱锥的底边的中点,连接和,则在底面正中,,且边长为,所以,在等腰中,边长为,所以且,所以就是侧面与底面所成二面角的平面角,所以在中,,故得解.【点睛】本题考查二面角,属于基础题.14、7【解析】由题意得,则715、【解析】
利用二倍角公式得出,再利用正弦定理转化,后用余弦定理求得,再利用正弦定理即可【详解】由得,,,根据正弦定理可得,,根据余弦定理【点睛】本题考查解三角形中正弦定理进行边角转化,余弦定理求角,以及三角形中两角和正弦与第三角正弦的关系16、.【解析】试题分析:由三视图可得几何体为正方体挖去一个圆锥:则:,.得体积为:考点:三视图与几何体的体积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)计算,以及根据函数在某点处导数的几何意义,可得切线斜率,然后根据点斜式,可得结果.(2)利用导数,采用分类讨论的方法,,以及判断函数的单调性,利用函数的最大值,可得结果.【详解】(1)当时,所以,则又,,∴所求切线方程为,即(2)①当时,在恒成立,②当时,由,得:由,得,∴函数在上递增,在上递减,,要使恒成立,只需满足即可,解得③若,由,得;由,得,∴函数在单调递增,在单调递减,∴,要使恒成立,只需满足即可,解得综上可得,的取值范围为.【点睛】本题考查函数导数的综合应用,难点在于对进行分类讨论,判断函数的单调性,属中档题.18、(1)在犯错概率不超过0.05的前提下认为“成绩优良与教学方式有关”.(2)见解析【解析】
(1)根据数据对应填写,再根据卡方公式求,最后对照参考数据作判断,(2)先根据分层抽样得成绩不优良的人数,再确定随机变量取法,利用组合数求对应概率,列表得分布列,最后根据数学期望公式求期望.【详解】解:(1)根据2×2列联表中的数据,得的观测值为,在犯错概率不超过0.05的前提下认为“成绩优良与教学方式有关”.(2)由表可知在8人中成绩不优良的人数为,则的可能取值为0,1,2,1.;;;.的分布列为:所以.【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19、(1)见解析(2)见解析【解析】
(1)用数学归纳法证明结论即可;(2)因为(N*),则,然后用反证法证明当时有矛盾,所以原不等式成立即可.【详解】(1)当时,.下面用数学归纳法证明:①当时,,结论成立;②假设当时,有成立,则当时,因,所以时结论也成立.综合①②可知(N*)成立.(2)因为(N*),则,若,则当时,,与矛盾.所以.【点睛】本题考查数列的递推公式、数学归纳法证明、反证法等知识,属于中档题.20、(1)(2)(3)【解析】分析:(1)先求导数,再求导函数的导数为,求零点,列表分析导函数单调性变化规律,进而确定导函数最小值取法,(2)先变量分离化简不等式,再利用导数研究单调性,根据单调性确定其最小值,即得实数的取值范围,进而得其最大值;(3)函数存在极大值与极小值,即存在两个零点,且在零点的两侧异号.先确定导函数不单调且最小值小于零,即得,再证明时有且仅有两个零点.详解:解:(1)当时,记则,由得.当时,,单调递减当时,,单调递增所以当时,所以(2)由得,即因为,所以.记,则记,则因为,所以且不恒为0所以时,单调递增,当时,,所以所以在上单调递增,因为对恒成立,所以,即所以实数的最大值为(3)记,因为存在极大值与极小值,所以,即存在两个零点,且在零点的两侧异号.①当时,,单调递增,此时不存在两个零点;②当时,由,得当时,,单调递减,当时,,单调递增,所以所以存在两个零点的必要条件为:,即由时,(ⅰ)记,则所以当时,单调递减,当时,,所以.所以在上,有且只有一个零点.又在上单调,所以在上有且只有一个零点,记为,由在内单调递减,易得当时,函数存在极大值(ⅱ)记,则所以时,,所以由(1)知时,有所以在上单调递增,所以时,因为且,的图像在单调且不间断,所以在上,有且只有一个零点.又在上单调所以在上有且只有一个零点,记为,由在内单调递增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届山东省聊城文轩中学高三生物第一学期期末达标检测试题含解析
- 甘肃省武威市天祝藏族自治县第一中学2025届数学高三第一学期期末教学质量检测试题含解析
- 吉林省长春市六中2025届高二上生物期末学业质量监测模拟试题含解析
- 2025届福建省龙岩市漳平第一中学高二上数学期末质量跟踪监视试题含解析
- 2025届安徽省亳州市第二中学高一生物第一学期期末综合测试模拟试题含解析
- 湖南省衡阳县创新实验班2025届英语高三第一学期期末学业水平测试模拟试题含解析
- 四川省资阳市高中2025届高二上数学期末监测试题含解析
- 云南省曲靖市沾益区第一中学2025届语文高三第一学期期末质量跟踪监视试题含解析
- 山东省齐河县一中2025届高一数学第一学期期末检测试题含解析
- 2025届浙江省鄞州中学数学高三第一学期期末检测试题含解析
- 车间安全管理考核细则范文
- 2023年副主任医师(副高)-普通外科学(副高)考试历年高频考点参考题库专家版答案
- 计算机网络技术(第3版)PPT完整全套教学课件
- 函数的单调性与最值-完整课件
- s和m关系协议书
- 空分装备安全检查表
- 安全风险隐患排查表国家隐患排查导则版
- 【基于杜邦分析的企业财务现状探究国内外文献综述5200字】
- 工程图学(天津大学)智慧树知到答案章节测试2023年
- 江苏省民用建筑施工图绿色设计专篇参考样式2021年版
- GB/T 17853-2018不锈钢药芯焊丝
评论
0/150
提交评论