




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数,则的共轭复数在复平面内对应点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.中,,则的值是()A. B. C. D.或3.执行如图所示的程序框图,则程序输出的结果为()A. B. C. D.4.已知函数是函数的导函数,,对任意实数都有,则不等式的解集为()A. B. C. D.5.双曲线的离心率为,抛物线的准线与双曲线的渐近线交于点,(为坐标原点)的面积为4,则抛物线的方程为()A. B. C. D.6.设,则“”是“”的A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件7.设直线l1,l2分别是函数f(x)=-lnx,0<x<1,lnx,x>1,图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)8.若定义域为的偶函数满足,且当时,,则函数在上的最大值为()A.1 B. C. D.-9.某军工企业为某种型号的新式步枪生产了一批枪管,其口径误差(单位:微米)服从正态分布,从已经生产出的枪管中随机取出一只,则其口径误差在区间内的概率为()(附:若随机变量服从正态分布,则,)A. B. C. D.10.若关于的不等式的解集是,则实数等于()A.-1 B.-2 C.1 D.211.命题p:∃x∈Ν,x3<x2;命题q:∀a∈0,1A.p假q真 B.p真q假C.p假q假 D.p真q真12.若x1=,x2=是函数f(x)=(>0)两个相邻的极值点,则=A.2 B.C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆(a>b>0)的离心率为e,,分别为椭圆的两个焦点,若椭圆上存在点P使得∠是钝角,则满足条件的一个e的值为____________14.一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利________元.15.关于的不等式恒成立,则的取值范围为________16.已知椭圆,双曲线.若双曲线的两条渐近线与椭圆的四个交点及椭圆的两个焦点恰为一个正六边形的顶点,则椭圆与双曲线的离心率之积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数的图象在点处的切线方程为,求,的值;(2)当时,在区间上至少存在一个,使得成立,求实数的取值范围.18.(12分)已知函数.(1)讨论的单调性;(2)当时,若恒成立,求的取值范围.19.(12分)的内角所对的边分别为,已知.(1)证明:;(2)当取得最小值时,求的值.20.(12分)已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.(1)求的值;(2)求的单调区间.21.(12分)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标(,),直线l的极坐标方程为ρcos(θ-)=a,.(1)若点A在直线l上,求直线l的直角坐标方程;(2)圆C的参数方程为(为参数),若直线与圆C相交的弦长为,求的值.22.(10分)已知函数f(x)=m(1)当n-m=1时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-3m2x2的两个零点分别为x1,x2(
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
化简,写出共轭复数即可根据复平面的定义选出答案.【详解】,在复平面内对应点为故选A【点睛】本题考查复数,属于基础题.2、B【解析】
根据正弦定理求解.【详解】由正弦定理得,选B.【点睛】本题考查正弦定理,考查基本分析求解能力,属基础题.3、C【解析】依次运行如图给出的程序,可得;,所以输出的的值构成周期为4的数列.因此当时,.故程序输出的结果为.选C.4、B【解析】令,,所以函数是减函数,又,所以不等式的解集为本题选择B选项.5、C【解析】由题意可知该双曲线是等轴双曲线,故渐近线方程是,而抛物线的准线方程为,由题设可得,则,所以(为坐标原点)的面积为,应选答案C。6、B【解析】
根据绝对值不等式和三次不等式的解法得到解集,根据小范围可推大范围,大范围不能推小范围得到结果.【详解】解得到,解,得到,由则一定有;反之,则不一定有;故“”是“”的充分不必要条件.故答案为:B.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.7、A【解析】试题分析:设P1(x1 , lnx1) , P2(x2 , -lnx2)(不妨设x考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.8、A【解析】
根据已知的偶函数以及f(2﹣x)=﹣f(x)可以求得函数f(x)在[﹣2,2]上的解析式,进而得到g(x)在[﹣2,2]上的解析式,对g(x)进行求导可知g(x)的增减性,通过增减性求得最大值【详解】根据,得函数关于点(1,0)对称,且当时,,则时,,所以当时,;又函数为偶函数,所以当时,则,可知当,故在[-2,0)上单调递增,时,在[0,2]上单调递减,故.故选:A【点睛】本题考查函数的基本性质:对称性,奇偶性,周期性.同时利用导函数的性质研究了函数在给定区间内的最值问题,是中档题9、C【解析】
根据已知可得,结合正态分布的对称性,即可求解.【详解】.故选:C【点睛】本题考查正态分布中两个量和的应用,以及正态分布的对称性,属于基础题.10、C【解析】
根据一元一次不等式与一元一次方程的关系,列出方程,即可求解.【详解】由题意不等式的解集是,所以方程的解是,则,解得,故选C.【点睛】本题主要考查了一元一次不等式与一元一次方程的关系的应用,着重考查了推理与运算能力,属于基础题.11、A【解析】试题分析:∵x3<x2,∴x2∵loga(2-1)=loga1=0考点:命题的真假.12、A【解析】
从极值点可得函数的周期,结合周期公式可得.【详解】由题意知,的周期,得.故选A.【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.二、填空题:本题共4小题,每小题5分,共20分。13、(答案不唯一,<e<1)【解析】
当为短轴端点时,最大,因此满足题意时,此角必为钝角.【详解】由题意当为短轴端点时,为钝角,∴,∴,,,∴.答案可为.【点睛】本题考查椭圆的几何性质.解题中注意性质:是椭圆上任意一点,是椭圆的两个焦点,当为短轴端点时,最大.14、37(元)【解析】
由已知条件直接求出数学期望,即可求得结果【详解】一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利:50×0.6+30×0.3-20×0.1=37(元).故答案为37(元)【点睛】本题主要考查了期望的实际运用,由已知条件,结合公式即可计算出结果,本题较为简单。15、【解析】
由题意得,由绝对值三角不等式求出函数的最小值,从而可求出实数的取值范围.【详解】由题意得,由绝对值三角不等式得,,因此,实数的取值范围是,故答案为:.【点睛】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.16、【解析】
利用条件求出正六边形的顶点坐标,代入椭圆方程,求出椭圆的离心率,利用渐近线的夹角求双曲线的离心率,从而得出答案。【详解】如图正六边形中,,直线即双曲线的渐近线方程为,由椭圆的定义可得,所以椭圆的离心率,双曲线的渐近线方程为,则,双曲线的离心率,所以椭圆与双曲线的离心率之积为【点睛】本题考查椭圆的定义和离心率,双曲线的简单性质,属于一般题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)m=2,n=﹣1;(2).【解析】分析:(1)求出函数的导数,结合切点坐标求出,的值即可;(2)求出函数的导数,通过讨论m的范围,求出函数的单调区间,从而求出m的范围即可.详解:(1)∵f′(x)=﹣+n,故f′(0)=n﹣m,即n﹣m=﹣3,又∵f(0)=m,故切点坐标是(0,m),∵切点在直线y=﹣3x+2上,故m=2,n=﹣1;(2)∵f(x)=+x,∴f′(x)=,当m≤0时,f′(x)>0,故函数f(x)在(﹣∞,1)递增,令x0=a<0,此时f(x)<0,符合题意,当m>0时,即0<m<e时,则函数f(x)在(﹣∞,lnm)递减,在(lnm,+∞)递增,①当lnm<1即0<m<e时,则函数f(x)在(﹣∞,lnm)递减,在(lnm,1]递增,f(x)min=f(lnm)=lnm+1<0,解得:0<m<,②当lnm>1即m≥e时,函数f(x)在区间(﹣∞,1)递减,则函数f(x)在区间(﹣∞,1)上的最小值是f(1)=+1<0,解得:m<﹣e,无解,综上,m<,即m的范围是(﹣∞,).点睛:本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想.18、(1)见解析(2)【解析】
(1)先求得函数的导函数,然后根据三种情况,讨论的单调性.(2)由题可知在上恒成立,构造函数,利用导数研究的单调性和最值,对分成两种进行分类讨论,根据在上恒成立,求得的取值范围.【详解】(1),当时,令,得,令,得或,所以在上单调递增,在上单调递减.当时,在上单调递增.当时,令,得,令,得或,所以在上单调递减,在上单调递增.(2)由题可知在上恒成立,令,则,令,则,所以在上为减函数,.当时,,即在上为减函数,则,所以,即,得.当时,令,若,则,所以,所以,又,所以在上有唯一零点,设为,在上,,即单调递增,在上,,即单调递减,则的最大值为,所以恒成立.由,得,则.因为,所以,由,得.记,则,所以在上是减函数,故.综上,的取值范围为.【点睛】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.19、(1)见解析;(2).【解析】分析:(1)由正弦定理和余弦定理化简即可;(2),当且仅当,即时,取等号.从而即可得到答案.详解:(1)∵,∴即∵,∴.(2)当且仅当,即时,取等号.∵,∴点睛:解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.20、(1)1;(2)单调递增区间为,单调递减区间为【解析】试题分析:(1)利用导函数与函数切线的关系得到关于实数k的方程,解方程可得k=1;(2)结合(1)的结论对函数的解析式进行求导可得,研究分子部分,令,结合函数h(x)的性质可得:的单调递增区间是(0,1)单调递减区间是.试题解析:(1)由题意得又,故(2)由(1)知,设,则即在上是减函数,由知,当时,,从而当时,,从而综上可知,的单调递增区间是(0,1)单调递减区间是21、(1)(2)或【解析】试题分析:(1)通过点A在直线l上,列出方程得到,然后求解直线l的直角坐标方程(2)消去参数,求出的普通方程,通过圆心到直线的距离半径半弦长的关系,即可求的值.试题解析:(1)由点在直线上,可得=所以直线的方程可化为从而直线的直角坐标方程为.(2)由已知得圆C的直角坐标方程为所以圆C的圆心为(2,0),半径,而直线的直角坐标方程为,若直线与圆C相交的弦长为则圆心到直线的距离为,所以求得或22、(1)见解析;(2)见解析【解析】
(1)先求导数,再根据导函数零点分类讨论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兴安职业技术学院《代数方法选讲》2023-2024学年第二学期期末试卷
- 佳木斯大学《晋唐书法专题》2023-2024学年第二学期期末试卷
- 浙江省杭州市临安区锦城第二初级中学2025届初三下学期开学调研试题英语试题含答案
- 宁夏建设职业技术学院《团体心理活动设计》2023-2024学年第二学期期末试卷
- 吉林省海门市重点名校2025届初三毕业生第一次教学质量监测英语试题含答案
- 硅冶炼企业的安全生产与事故防范考核试卷
- 咖啡馆行业知识产权战略制定考核试卷
- 工作生活两不误考核试卷
- 煤气化技术的能源供需关系研究考核试卷
- 摩托车雨衣与防雨装备使用考核试卷
- 安全文明施工保证措施及承诺
- 地理课程跨学科主题学习的问题与对策
- 2024年国家发改委直属单位招聘考试真题
- 境外项目合作居间协议书范本
- 蔚来销售培训
- 艾滋病、梅毒母婴阻断干预技术课件
- 中国常规肺功能检查基层指南解读(2024年)解读课件
- 《IFC工业基础类》课件
- 老有所学-家庭教育的内涵及对老年人生活质量的影响
- 二手房买卖合同(无中介)一次性付款
- 2025江苏省铁路集团限公司春季招聘24人高频重点提升(共500题)附带答案详解
评论
0/150
提交评论