版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.由曲线,直线及轴所围成的平面图形的面积为()A.6 B.4 C. D.3.曲线对称的曲线的极坐标方程是()A. B. C. D.4.定积分等于()A. B. C. D.5.下列说法错误的是()A.在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B.在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C.线性回归方程对应的直线至少经过其样本数据点中的一个点D.在回归分析中,相关指数越大,模拟的效果越好6.定义在上的偶函数的导函数为,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为(
)A. B. C. D.7.设有下面四个命题若,则;若,则;若,则;若,则.其中真命题的个数为()A. B. C. D.8.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为()A. B. C. D.9.对于两个平面和两条直线,下列命题中真命题是()A.若,则 B.若,则C.若,则 D.若,则10.已知点在椭圆上,、分别是椭圆的左、右焦点,的中点在轴上,则等于()A. B. C. D.11.如图所示,程序框图输出的某一实数中,若,则菱形框中应填入()A. B. C. D.12.在同一坐标系中,将曲线变为曲线的伸缩变换公式是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数是纯虚数,则实数的值为____.14.在等差数列中,,则________15.关于的方程的解为________16.已知为数列的前项和,若且,设,则的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中.(1)若,,求的值;(2)若,化简:.18.(12分)如图,过椭圆的左焦点作轴的垂线交椭圆于点,点和点分别为椭圆的右顶点和上顶点,.(1)求椭圆的离心率;(2)过右焦点作一条弦,使,若的面积为,求椭圆的方程.19.(12分)已知函数fx(1)解不等式fx(2)若gx=3x-2m+3x-1,对∀x120.(12分)已知函数.(1)当时,求证:在上是单调递减函数;(2)若函数有两个正零点、,求的取值范围,并证明:.21.(12分)已知函数().(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)若对任意,恒成立,求实数的取值范围.22.(10分)已知实数为整数,函数,(1)求函数的单调区间;(2)如果存在,使得成立,试判断整数是否有最小值,若有,求出值;若无,请说明理由(注:为自然对数的底数).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】,,,∴“”是“”的充分不必要条件.故选:.2、D【解析】
先求可积区间,再根据定积分求面积.【详解】由,得交点为,所以所求面积为,选D.【点睛】本题考查定积分求封闭图形面积,考查基本求解能力,属基本题.3、A【解析】
先把两曲线极坐标方程化为普通方程,求得对称曲线,再转化为极坐标方程。【详解】化为标准方程可知曲线为,曲线为,所以对称直线为,化为极坐标方程为,选A.【点睛】由直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。4、B【解析】
由定积分表示半个圆的面积,再由圆的面积公式可求结果。【详解】由题意可知定积分表示半径为的半个圆的面积,所以,选B.【点睛】1.由函数图象或曲线围成的曲边图形面积的计算及应用,一般转化为定积分的计算及应用,但一定要找准积分上限、下限及被积函数,且当图形的边界不同时,要讨论解决.(1)画出图形,确定图形范围;(2)解方程组求出图形交点坐标,确定积分上、下限;(3)确定被积函数,注意分清函数图形的上、下位置;(4)计算定积分,求出平面图形的面积.2.由函数求其定积分,能用公式的利用公式计算,有些特殊函数可根据其几何意义,求出其围成的几何图形的面积,即其定积分.有些由函数的性质求函数的定积分。5、C【解析】对于A,统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法,正确;对于B,残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好,正确;对于C,线性回归方程对应的直线过样本中心点,不一定过样本数据中的点,故C错误;对于D,回归分析中,相关指数R2越大,其模拟的效果就越好,正确.故选C.6、A【解析】
分析:构造新函数,利用导数确定它的单调性,从而可得题中不等式的解.详解:设,则,由已知当时,,∴在上是减函数,又∵是偶函数,∴也是偶函数,,不等式即为,即,∴,∴,即.故选A.点睛:本题考查用导数研究函数的单调性,然后解函数不等式.解题关键是构造新函数.新函数的结构可结合已知导数的不等式和待解的不等式的形式构造.如,,,等等.7、C【解析】分析:对四个命题逐一分析即可.详解:对若,则,故不正确;对若,则,故正确;对若,则,故正确;对若,对称轴为,则,故正确.故选:C.点睛:本题考查了命题真假的判断,是基础题.8、C【解析】分析:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,利用古典概型概率公式求出的值,由条件概率公式可得结果.详解:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,,,在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为,故选C.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.9、D【解析】
根据线面平行垂直的位置关系判断.【详解】A中可能在内,A错;B中也可能在内,B错;与可能平行,C错;,则或,若,则由得,若,则内有直线,而易知,从而,D正确.故选D.【点睛】本题考查线面平行与垂直的关系,在说明一个命题是错误时可举一反例.说明命题是正确时必须证明.10、A【解析】由题意可得,设P,且,所以=,选A.【点睛】若,是椭圆的左、右焦点,且,则点P的坐标为.11、B【解析】分析:由已知中的程序语句可知,该程序功能是利用循环结构计算并输出实数对,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案.详解:由题意,当时,第1次循环,不满足条件,;第2次循环,不满足条件,;第3次循环,不满足条件,;第4次循环,不满足条件,;第5次循环,不满足条件,,此时输出结果,所以判断框填写的条件应为,故选B.点睛:本题主要考查了循环结构的程序框图的判断条件的添加问题,其中极大中应模拟程序框图的运行过程,把握程序框图的运算功能是解答的关键,着重考查了推理与运算能力.12、C【解析】
根据新旧两个坐标的对应关系,求得伸缩变换的公式.【详解】旧的,新的,故,故选C.【点睛】本小题主要考查曲线的伸缩变换公式,属于基础题,解题关键是区分清楚新旧两个坐标的对应关系.二、填空题:本题共4小题,每小题5分,共20分。13、-【解析】
由纯虚数的定义,可以得到一个关于的等式和不等式,最后求出的值.【详解】因为复数是纯虚数,所以有,.故答案为.【点睛】本题考查了纯虚数的定义,解不等式和方程是解题的关键.14、40【解析】
根据前项和公式,结合已知条件列式求得的值.【详解】依题意.【点睛】本小题主要考查等差数列前项和公式,属于基础题.15、4或7【解析】
根据组合数的性质,列出方程,求出的值即可.【详解】解:∵,
∴或,
解得或.故答案为:4或7.【点睛】本题考查了组合数的性质与应用问题,是基础题目.16、【解析】
根据是等比数列得出,利用数列项与和的关系,求得,从而得出,利用裂项相消法求出答案.【详解】由可知,数列是首项为,公比为2的等比数列,所以.时,..时,.【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列通项公式,数列项与和的关系,裂项相消法求和,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)分别令,,利用二项展开式展开和,将两式相减可得出的值;(2)将代入,求得,当时,,当时,,当时,利用组合数公式可得,化简可得结果.【详解】(1),时,令得,令得可得;(2)若,,当时,,当时,,当时,,·····综上,.【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有利用赋值法求对应系数的和,利用组合数公式化简相应的式子,属于中档题目.18、(1);(2).【解析】
(1)由可得,计算进而得答案。(2)设直线的方程,联立方程组,利用韦达定理,代入的面积公式计算整理即可。【详解】(1),,,,,解得,,故.(2)由(1)知椭圆方程可化简为.①易求直线的斜率为,故可设直线的方程为:.②由①②消去得.,.于是的面积,.因此椭圆的方程为,即【点睛】本题考查椭圆的离心率以及通过弦长公式求椭圆的相关量,属于一般题。19、(1)x|0≤x≤1;(2)-1【解析】
(1)对x分类讨论,将不等式转化为代数不等式,求解即可;(2)分别求出函数的最值,利用最值建立不等式,即可得到实数m的取值范围..【详解】解:(1)不等式等价于x≤-1,-3x≤x+2,或-1<x≤1解得x∈∅或0≤x≤12或12<x≤1(2)由f(x)=-3x,x≤-1,-x+2,-1<x≤12,g(x)≥|(3x-2m)-(3x-1)|=|2m-1|,当且仅当(3x-2m)(3x-1)≤0时取等号,所以|2m-1|≤32,解得-14≤m≤54【点睛】本题考查方程有解问题,考查不等式的解法,考查转化思想以及计算能力.20、(1)见证明;(2)实数的取值范围是,证明见解析.【解析】
(1)由题意得出在区间上恒成立,由得出,构造函数,证明在区间上恒成立即可;(2)由利用参变量分离法得出,将题意转化为当直线与函数在上有两个交点时求的取值范围,利用数形结合思想求解即可,然后由题意得出,取自然对数得,等式作差得,利用分析得出所证不等式等价于,然后构造函数证明即可.【详解】(1),.由题意知,不等式在区间上恒成立,由于,当时,,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,即,,所以,.所以,不等式在区间上恒成立,因此,当时,函数在上是单调递减函数;(2)令,可得令,则.当时,,当时,.当时,函数单调递减,当时,函数单调递增.,当时,,当时..时,函数有两个正零点,因此,实数的取值范围是.由上知时,,由题意得,上述等式两边取自然对数得,两式作差得,,要证,即证.由于,则,即证,即证,令,即证,其中.构造函数,其中,即证在上恒成立.,所以,函数在区间上恒成立,所以,,因此,.【点睛】本题考查利用导数证明函数的单调性,以及利用导数研究函数的零点问题,同时也考查了利用导数证明函数不等式,难点在于构造新函数,借助新函数的单调性来证明,考查化归与转化数学思想的应用,属于难题.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)对函数进行求导,然后求出处的切线的斜率,再利用直线的点斜式方程求出切线方程,最后化为一般式方程;(Ⅱ)先证明当时,对任意,恒成立,然后再证明当时,对任意,恒成立时,实数的取值范围.法一:对函数求导,然后判断出单调性,求出函数的最大值,只要最大值小于零即可,这样可以求出实数的取值范围;法二:原不等式恒成立可以转化为恒成立问题.,求导,判断出函数的单调性,求出函数的最大值,只要大于最大值即可,解出不等式,最后求出实数的取值范围.【详解】解:(Ⅰ)当时,,,,曲线在点处的切线方程为,即(Ⅱ)当时,(),对任意,恒成立,符合题意法一:当时,,;在上单调递增,在上单调递减只需即可,解得故实数的取值范围是法二:当时,恒成立恒成立,令,则,;,在上单调递增,在上单调递减只需即可,解得故实数的取值范围是【点睛】本题考查了求曲线的切线方程,考查了不等式恒成立时,求参数问题,利用导数求出函数的最值是解题的关键.22、(1)函数的单调递减区间是,单调递增区间是(2)的最小值为1【解析】
(1)求导函数后,注意对分式分子实行有理化,注意利用平方差公式,然后分析单调性;(2)由可得不等式,通过构造函数证明函数的最值满
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《室性早搏导管消融》课件
- 会博通10单用户版用户操作指引
- 《动物防疫法》考试题库100题(含答案)
- 蜂窝微纳孔、量子单层石墨烯面料技改项目可行性研究报告写作模板-申批备案
- 2025年河北女子职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 专题06 发展与合作-(解析版)
- 2025年昭通卫生职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 《医疗器械法规培训》课件
- 2025年春节消费机遇和备货建议报告
- 中班区域活动计划实施方案五篇
- 安全生产网格员培训
- 小学数学分数四则混合运算300题带答案
- 2024年交管12123学法减分考试题库和答案
- 临床下肢深静脉血栓的预防和护理新进展
- 动物生产与流通环节检疫(动物防疫检疫课件)
- 2024年山东泰安市泰山财金投资集团有限公司招聘笔试参考题库含答案解析
- 英语主语从句省公开课一等奖全国示范课微课金奖课件
- C139客户开发管理模型
- 年度工作总结与计划会议
- 医保按病种分值付费(DIP)院内培训
- 近五年重庆中考物理试题及答案2023
评论
0/150
提交评论