2023届河南省新野县第一中学数学高二第二学期期末监测试题含解析_第1页
2023届河南省新野县第一中学数学高二第二学期期末监测试题含解析_第2页
2023届河南省新野县第一中学数学高二第二学期期末监测试题含解析_第3页
2023届河南省新野县第一中学数学高二第二学期期末监测试题含解析_第4页
2023届河南省新野县第一中学数学高二第二学期期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量Z服从正态分布N(0,),若P(Z>2)=0.023,则P(-2≤Z≤2)=A.0.477 B.0.625 C.0.954 D.0.9772.若复数是纯虚数,则实数的值为()A.1或2 B.或2 C. D.23.2019年4月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有()A.150种 B.240种 C.300种 D.360种4.已知,,,则,,的大小关系为()A. B.C. D.5.已知双曲线的离心率为,焦点是,,则双曲线方程为()A. B.C. D.6.函数的最小值为0,则m的取值范围是()A.(1,2) B.(-1,2)C.[1,2) D.[-1,2)7.直线的倾斜角为()A. B. C. D.8.复数z满足,则复数z在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.存在实数,使成立的一个必要不充分条件是()A. B. C. D.10.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次验,并且利用线性回归方程,求得回归直线分别为和.已知两个人在试验中发现对变x的观测数据的平均值都是s,对变量y的观测数据的平均值都为t,那么下列说法正确的()A.与相交于点(s,t)B.与相交,交点不一定是(s,t)C.与必关于点(s,t)对称D.与必定重合11.设实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于()A.0 B. C. D.112.已知函数,,若存在2个零点,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,其中实数,则__________.14.的二项展开式中项的系数为________.15.已知函数f(x)=x3﹣3x+1,则函数y=f(x)的单调递减区间是_____16.甲乙两名选手进行一场羽毛球比赛,采用三局二胜制,先胜两局者赢得比赛,比赛随即结束,已知任一局甲胜的概率为,若甲赢得比赛的概率为,则取得最大值时______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)人站成两排队列,前排人,后排人.(1)一共有多少种站法;(2)现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,求有多少种不同的加入方法.18.(12分)已知.(1)证明:;(2)若,求实数的取值范围.19.(12分)已知椭圆的离心率为,顺次连接椭圆的四个顶点,所得到的四边形面积为.(1)求椭圆的方程;(2)设不垂直于坐标轴的直线与相交于两个不同的点,且直线的斜率成等比数列,求线段的中点的轨迹方程.20.(12分)为了实现绿色发展,避免能源浪费,某市计划对居民用电实行阶梯收费.阶梯电价原则上以住宅(一套住宅为一户)的月用电量为基准定价,具体划分标准如表:阶梯级别第一阶梯电量第二阶梯电量第三阶梯电量月用电量范围(单位:kW⋅h)(0,200](200,400](400,+∞]从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,X表示用电量为第二阶梯的户数,求X的概率分布列和数学期望.21.(12分)已知函数.(Ⅰ)若函数在上是单调递增函数,求实数的取值范围;(Ⅱ)若,对任意,不等式恒成立,求实数的取值范围.22.(10分)求的二项展开式中的第5项的二项式系数和系数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】因为随机变量服从正态分布,所以正态曲线关于直线对称,又,所以,所以0.954,故选C.【命题意图】本题考查正态分布的基础知识,掌握其基础知识是解答好本题的关键.2、C【解析】

根据纯虚数的定义可得2m2﹣3m﹣2=0且m2﹣3m+2≠0然后求解.【详解】∵复数z=(2m2﹣3m﹣2)+(m2﹣3m+2)i是纯虚数∴2m2﹣3m﹣2=0且m2﹣3m+2≠0∴m故选C.【点睛】本题主要考查了纯虚数的概念,解题的关键是要注意m2﹣3m+2≠0,属于基础题.3、A【解析】

根据题意,需要将5个安保小组分成三组,分析可得有2种分组方法:按照1、1、3分组或按照1、2、2分组,求出每一种情况的分组方法数目,由加法计数原理计算可得答案.【详解】根据题意,三个区域至少有一个安保小组,所以可以把5个安保小组分成三组,有两种分法:按照1、1、3分组或按照1、2、2分组;若按照1、1、3分组,共有种分组方法;若按照1、2、2分组,共有种分组方法,根据分类计数原理知共有60+90=150种分组方法.故选:A.【点睛】本题考查排列、组合及简单计数问题,本题属于分组再分配问题,根据题意分析可分组方法进行分组再分配,按照分类计数原理相加即可,属于简单题.4、C【解析】

根据的单调性判断的大小关系,由判断出三者的大小关系.【详解】由,,,则.故选C.【点睛】本小题主要考查对数运算,考查对数函数的单调性,考查对数式比较大小,属于基础题.5、A【解析】由题意e=2,c=4,由e=,可解得a=2,又b2=c2﹣a2,解得b2=12所以双曲线的方程为.故答案为.故答案选A.6、B【解析】

化简函数为,根据函数的单调性以及在时取得最小值0,求出的范围.【详解】函数在区间(-1,+∞)上是减函数.当x=2时,y=0.根据题意x∈(m,n]时,.所以m的取值范围是-1<m<2,故选B.【点睛】该题所考查的是利用函数在某个区间上的最值,来确定区间对应的位置,涉及到的知识点有反比例型函数的单调性,确定最值在哪个点处取,从而求得对应的参数的取值范围,属于简单题目.7、B【解析】试题分析:记直线的倾斜角为,∴,故选B.考点:直线的倾斜角.8、A【解析】

把已知等式变形,利用复数代数形式的乘除运算化简得答案.【详解】解:由,得.∴复数z在复平面内的对应点的坐标为,位于第一象限.故选A.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.9、D【解析】分析:先求成立充要条件,即的最小值,再根据条件之间包含关系确定选择.详解:因为存在实数,使成立,所以的最小值,因为,所以,因为,因此选D.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.10、A【解析】

根据线性回归方程l1和l2都过样本中心点(s,t),判断A说法正确.【详解】解:根据线性回归方程l1和l2都过样本中心点(s,t),∴与相交于点,A说法正确.故选:A.【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题.11、B【解析】∵三个数,,的和为1,其平均数为∴三个数中至少有一个大于或等于假设,,都小于,则∴,,中至少有一个数不小于故选B.12、B【解析】

由于有两个零点,则图象与有两个交点,作出图象,讨论临界位置.【详解】作出图象与图象如图:当过点时,,将向下平移都能满足有两个交点,将向上平移此时仅有一个交点,不满足,又因为点取不到,所以.【点睛】分段函数的零点个数,可以用数形结合的思想来分析,将函数零点的问题转变为函数图象交点的个数问题会更加方便我们解决问题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:由题,利用二项展开式即可求得.详解:根据题意,则即答案为.点睛:本题考查二项展开式及展开式的系数,属中档题.14、60【解析】

先写出二项展开式的通项,,令,进而可求出结果.【详解】因为的二项展开式的通项为:,令,则,所以项的系数为.故答案为:【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于常考题型.15、【解析】

求得函数的导数,利用导数的符号,即可求解,得到答案.【详解】由题意,函数,则,令,即,解得,所以函数的单调递减区间为,故答案为:.【点睛】本题主要考查了利用研究函数的单调性,求解函数的单调区间,其中解答中熟记导数与原函数的关系式解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】

利用表示出,从而将表示为关于的函数,利用导数求解出当时函数的单调性,从而可确定最大值点.【详解】甲赢得比赛的概率:,令,则,令,解得:当时,;当时,即在上单调递增;在上单调递减当时,取最大值,即取最大值本题正确结果:【点睛】本题考查利用导数求解函数的最值问题,关键是根据条件将表示为关于变量的函数,同时需要注意函数的定义域.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据题意,将7个人全排列,再将其中前3人安排在前排,后面4人安排在后排即可,由排列数公式计算可得答案;(2)根据题意,分2步进行分析:①前排3人有4个空,从甲乙丙3人中选1人插入;②对于后排,分2种情况讨论,求出后排的排法数目,由分步计数原理计算可得答案.【详解】(1)根据题意,将7个人全排列,再将其中前3人安排在前排,后面4人安排在后排即可;则有种排法,(2)根据题意,分2步进行分析:①前排3人有4个空,从甲乙丙3人中选1人插入,有种排法;②对于后排,若插入的2人不相邻有种,若相邻有种,则后排的安排方法有种;则有种排法.【点睛】本题考查排列、组合的应用,考查逻辑推理能力、运算求解能力,求解时注意分类讨论思想的运用.18、(1)证明见解析;(2).【解析】

(1)根据绝对值三角不等式得到;(2),则,故,分情况去掉绝对值解出不等式即可.【详解】(1)证明:.(2)解:若,则,故∴或,解得:.∴实数的取值范围为.【点睛】这个题目考查了含有绝对值的不等式的解法,绝对值三角不等式的应用,以及函数的最值问题;一般对于解含有多个绝对值的不等式,根据零点分区间,将绝对值去掉,分段解不等式即可.19、(1);(2),.【解析】

(1)由椭圆离心率和四边形的面积公式,求出和的值,即可求得椭圆的方程;(2)若设直线,,则由直线的斜率成等比数列,得,再结合根与系数的关系,可求出的值.【详解】(1),四边形的面积,,椭圆(2)设直线,联立,消去得:由,得,,或(a)当时,直线过原点,关于原点对称,故线段的中点即为原点;(b)当时,,设则消去,将代入得注意到判别式,故,所以综合(a)(b),所求轨迹方程为,或者写为,【点睛】此题考查的是椭圆方程的求解和直线与椭圆的位置关系,属于中档题.20、(1)P(A)=139165【解析】分析:(1)设“从100户中任意抽取2户,至少1户月用电量为第二阶梯”为事件A,利用对立事件可求P(A).(2)从全市任取1户,抽到用电量为第二阶梯的概率P=6则X~B(3,35),即可求出详解:(1)设“从100户中任意抽取2户,至少1户月用电量为第二阶梯”为事件A,则P(A)=1-C(2)从全市任取1户,抽到用电量为第二阶梯的概率P=6所以X~B(3,35)X的分布列为X0123P(X=k)8365427E(X)=3×3点睛:本题考查离散型随机变量分布列及其期望的求法,考查古典概型,属基础题.21、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)将问题转化为对恒成立,然后利用参变量分离法得出,于是可得出实数的取值范围;(Ⅱ)由(Ⅰ)知,函数在上是增函数,设,并设,得知在区间上为减函数,转化为在上恒成立,利用参变量分离法得到,然后利用导数求出函数在上的最大值可求出实数的取值范围。【详解】(Ⅰ)易知不是常值函数,∵在上是增函数,∴恒成立,所以,只需;(Ⅱ)因为,由(Ⅰ)知,函数在上单调递增,不妨设,则,可化为,设,则,所以为上的减函数,即在上恒成立,等价于在上恒成立,设,所以,因,所以,所以函数在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论