2023届广东省五校数学高二下期末达标检测试题含解析_第1页
2023届广东省五校数学高二下期末达标检测试题含解析_第2页
2023届广东省五校数学高二下期末达标检测试题含解析_第3页
2023届广东省五校数学高二下期末达标检测试题含解析_第4页
2023届广东省五校数学高二下期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间不重合的三条直线、、及一个平面,下列命题中的假命题是().A.若,,则 B.若,,则C.若,,则 D.若,,则2.如图阴影部分为曲边梯形,其曲线对应函数为,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是()A. B. C. D.3.8名学生和2位教师站成一排合影,2位教师不相邻的排法种数为()A. B. C. D.4.设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.-15x4 B.15x4 C.-20ix4 D.20ix45.在等差数列中,,则()A.45 B.75 C.180 D.3606.若函数是奇函数,则使得成立的的取值范围是()A. B.C. D.7.函数图象的大致形状是()A. B. C. D.8.《九章算术》中,将底面是直角三角形的直三梭柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为()A. B. C. D.9.已知函数满足,若函数与的图像的交点为,,…,,且,则()A.1 B.2 C.3 D.410.已知,,,则()A. B. C. D.11.已知,则的值()A.都大于1 B.都小于1C.至多有一个不小于1 D.至少有一个不小于112.可以整除(其中)的是()A.9 B.10 C.11 D.12二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的值域为,函数的单调减区间为,则________.14.从1、3、5、7中任取2个数字,从0、2、4、6中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有________个.(用数字作答)15.在平面直角坐标系中,双曲线的渐近线方程为______.16.若圆柱的侧面展开图是一个正方形,则它的母线长和底面半径的比值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:交强险浮动因素和浮动费率比率表浮动因素浮动比率上一年度未发生有责任道路交通事故下浮10%上两年度未发生有责任道路交通事故下浮上三年度未发生有责任道路交通事故下浮30%上一个年度发生一次有责任不涉及死亡的道路交通事故0%上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故上浮10%上一个年度发生有责任交通死亡事故上浮30%某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型A1A2A3A4A5A6数量105520155以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.18.(12分)由中央电视台综合频道()和唯众传媒联合制作的《开讲啦》是中国首档青春电视公开课。每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了、两个地区的100名观众,得到如下的列联表:非常满意满意合计30合计已知在被调查的100名观众中随机抽取1名,该观众是地区当中“非常满意”的观众的概率为,且.(Ⅰ)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“满意”的、地区的人数各是多少;(Ⅱ)完成上述表格,并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系;(Ⅲ)若以抽样调查的频率为概率,从地区随机抽取3人,设抽到的观众“非常满意”的人数为,求的分布列和期望.附:参考公式:19.(12分)已知函数.(1)当时,求函数的单调区间;(2)函数在上是减函数,求实数a的取值范围.20.(12分)已知数列的前项和为,且,.(Ⅰ)试计算,,,,并猜想的表达式;(Ⅱ)求出的表达式,并证明(Ⅰ)中你的猜想.21.(12分)高二某班名同学期末考完试后,商量购买一些学习参考书准备在高三时使用,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪购买,掷出点数大于或等于的人去图书批发市场购买,掷出点数小于的人去网上购买,且参加者必须从图书批发市场和网上选择一家购买.(1)求这人中至多有人去图书批发市场购买的概率;(2)用、分别表示这人中去图书批发市场和网上购买的人数,记,求随机变量的分布列和数学期望.22.(10分)已知函数,对任意的,满足,其中,为常数.(1)若的图象在处的切线经过点,求的值;(2)已知,求证:;(3)当存在三个不同的零点时,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据线线、线面有关定理对选项逐一分析,由此确定是假命题的选项.【详解】对于A选项,根据平行公理可知,A选项正确.对于B选项,两条直线平行与同一个平面,这两条直线可以相交、平行或异面,故B选项是假命题.对于C选项,由于,,根据空间角的定义可知,,C选项正确.对于D选项,由于,所以平行于平面内一条直线,而,所以,所以,即D选项正确.故选:B.【点睛】本小题主要考查空间线线、线面有关命题真假性的判断,属于基础题.2、D【解析】

通过定积分可求出空白部分面积,于是利用几何概型公式可得答案.【详解】由题可知长方形面积为3,而长方形空白部分面积为:,故所求概率为,故选D.【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.3、A【解析】

本题选用“插空法”,先让8名学生排列,再2位教师教师再8名学生之间的9个位置排列.【详解】先将8名学生排成一排的排法有种,再把2位教师插入8名学生之间的9个位置(包含头尾的位置),共有种排法,故2位教师不相邻的排法种数为种.故选A.【点睛】本题考查排列组合和计数原理,此题也可用间接法.特殊排列组合常用的方法有:1、插空法,2、捆绑法.4、A【解析】试题分析:二项式(x+i)6的展开式的通项为Tr+1=C6rx6-ri【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式(x+i)6可以写为(i+x)6,则其通项为C6ri5、C【解析】

由,利用等差数列的性质求出,再利用等差数列的性质可得结果.【详解】由,得到,则.故选C.【点睛】本题主要考查等差数列性质的应用,属于基础题.解与等差数列有关的问题时,要注意应用等差数列的性质:若,则.6、C【解析】的定义域为,它应该关于原点对称,所以,又时,,,为奇函数.又原不等式可以化为,所以,所以,选C.点睛:如果一个函数为奇函数或偶函数,那么它的定义域必须关于原点对称,我们可以利用这个性质去求奇函数或偶函数中的参数的值.7、B【解析】

利用奇偶性可排除A、C;再由的正负可排除D.【详解】,,故为奇函数,排除选项A、C;又,排除D,选B.故选:B.【点睛】本题考查根据解析式选择图象问题,在做这类题时,一般要结合函数的奇偶性、单调性、对称性以及特殊点函数值来判断,是一道基础题.8、D【解析】分析:先还原几何体,再根据棱柱各面形状求面积.详解:因为几何体为一个以俯视图为底面的三棱柱,底面直角三角形的两直角边长为2和,所以棱柱表面积为,选D.点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.9、D【解析】

求出f(x)的对称轴,y=|x2-ax-5|的图象的对称轴,根据两图象的对称关系,求和,解方程可得所求值.【详解】∵f(x)=f(a-x),∴f(x)的图象关于直线x=对称,又y=|x2-ax-5|的图象关于直线x=对称,当m为偶数时,两图象的交点两两关于直线x=对称,∴x1+x2+x3+…+xm=•a=2m,解得a=1.当m奇数时,两图象的交点有m-1个两两关于直线x=对称,另一个交点在对称轴x=上,∴x1+x2+x3+…+xm=a•+=2m.解得a=1.故选D.【点睛】本题考查了二次型函数图象的对称性的应用,考查转化思想以及计算能力.10、C【解析】

通过分段法,根据指数函数、对数函数和三角函数的性质,判断出,由此选出正确结论.【详解】解:∵,,,;∴.故选C.【点睛】本小题主要考查利用对数函数、指数函数和三角函数的性质比较大小,考查分段法比较大小,属于基础题.11、D【解析】

先假设,这样可以排除A,B.再令,排除C.用反证法证明选项D是正确的.【详解】解:令,则,排除A,B.令,则,排除C.对于D,假设,则,相加得,矛盾,故选D.【点睛】本题考查了反证法的应用,应用特例排除法是解题的关键.12、C【解析】分析:,利用二项展开式可证明能被11整除.详解:.故能整除(其中)的是11.故选C.点睛:本题考查利用二项式定理证明整除问题,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由的值域为,,可得,由单调递减区间为,,结合函数的单调性与导数的关系可求.【详解】由的值域为,,可得,,,,由单调递减区间为,,可知及是的根,且,把代入可得,,解可得,或,当时,可得,当时,代入可得不符合题意,故,故答案为:.【点睛】本题考查二次函数的性质及函数的导数与单调性的关系的应用,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.14、1【解析】

题目要求得到能被5整除的数字,注意0和5的排列,分三种情况进行讨论,四位数中包含5和0的情况,四位数中包含5,不含0的情况,四位数中包含0,不含5的情况,根据分步计数原理得到结果.【详解】解:①四位数中包含5和0的情况:.②四位数中包含5,不含0的情况:.③四位数中包含0,不含5的情况:.四位数总数为.故答案为:1.【点睛】本题是一个典型的排列问题,数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏,属于中档题.15、.【解析】

直接利用双曲线的标准方程求出渐近线方程即可.【详解】解:由双曲线的标准方程可知,其渐近线为.故答案为:.【点睛】本题考查了双曲线渐近线的求解.16、【解析】试题分析:设圆柱的底面半径为r,母线长为l,由题意r=l,∴考点:本题考查了圆柱展开图的性质点评:掌握圆柱的性质是解决此类问题的关键,属基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析,(2)①,②万元【解析】

(1)由题意列出X的可能取值为,,,,,,结合表格写出概率及分布列,再求解期望(2)①建立二项分布求解三辆车中至多有一辆事故车的概率②先求出一辆二手车利润的期望,再乘以100即可【详解】(1)由题意可知:X的可能取值为,,,,,由统计数据可知:,,,,,.所以的分布列为:.(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故的概率为,三辆车中至多有一辆事故车的概率为:.②设Y为给销售商购进并销售一辆二手车的利润,Y的可能取值为所以Y的分布列为:YP所以.所以该销售商一次购进辆该品牌车龄已满三年的二手车获得利润的期望值为万元.【点睛】本题考查离散型随机变量及分布列,考查二项分布,考查计算能力,是基础题18、(1)3;4.(2)列联表见解析;没有的把握认为观众的满意程度与所在地区有关系.(3)分布列见解析;.【解析】分析:(1)先根据概率计算x的值,得出y+z=35,再计算y与z的值,根据比例得出应抽取“满意”的A、B地区的人数;

(2)根据独立性检验公式计算观测值k2,从而得出结论;

(3)根据二项分布的概率公式计算分布列和数学期望.详解:(Ⅰ)由题意,得,所以,所以,因为,所以,,地抽取,地抽取.(Ⅱ)非常满意满意合计301545352055合计6535100的观察值所以没有的把握认为观众的满意程度与所在地区有关系.(Ⅲ)从地区随机抽取1人,抽到的观众“非常满意”的概率为随机抽取3人,的可能取值为0,1,2,3,,的分布列0123的数学期望:点睛:本题考查了抽样调查,独立性检验,二项分布,题目比较长做题时要有耐心审题,认真分析条件,细心求解,属于中档题.19、(1)减区间为(0,),(1,+∞),增区间为(,1);(2)【解析】分析:(1)求导得,得到减区间为(0,),(1,+∞),增区间为(,1);(2),在x∈(2,4)上恒成立,等价于上恒成立,即可求出实数a的取值范围详解:(1)函数的定义域为(0,+∞),在区间(0,),(1,+∞)上f′(x)<0.函数为减函数;在区间(,1)上f′(x)>0.函数为增函数.(2)函数在(2,4)上是减函数,则,在x∈(2,4)上恒成立.实数a的取值范围点睛:本题考查导数的综合应用.导数的基本应用就是判断函数的单调性,,单调递增,,单调递减.当函数含参时,则一般采取分离参数法,转化为已知函数的最值问题,利用导数求解.20、(Ⅰ)答案见解析;(Ⅱ),证明见解析.【解析】分析:(1)利用公式,将已知转换成关于的递推公式,计算,,,,在通过分子和分母的规律猜想出.(2)根据,结合通项公式的累乘法求出.再运用求和证明(1)的猜想.详解:(Ⅰ)由,得,,,,猜想.(Ⅱ)证明:因为①,所以②,①-②得,所以.化简得,所以,,,…,,把上面各式相乘得,所以,,.点睛:数列问题注意两个方面的问题:(1)的特殊性;(2)时,①消去,如,可以计算;②消去,如,可以计算.21、(1);(2)分布列见解析,.【解析】

(1)由题意可知,名同学中每名同学去图书批发市场购买的概率为,然后利用互斥事件的概率加法公式和独立重复试验的概率公式可计算出所求事件的概率;(2)由题意可知,随机变量的可能取值有、、,分别求出相应的概率,由此能求出随机变量的分布列和数学期望.【详解】(1)由题意可知,名同学中每名同学去图书批发市场购买的概率为,所以,这人中至

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论