版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,且,则等于()A. B. C. D.2.从5名女教师和3名男教师中选出一位主考、两位监考参加2019年高考某考场的监考工作.要求主考固定在考场前方监考,一女教师在考场内流动监考,另一位教师固定在考场后方监考,则不同的安排方案种数为()A.105 B.210 C.240 D.6303.如图,是正四面体的面上一点,点到平面距离与到点的距离相等,则动点的轨迹是()A.直线 B.抛物线C.离心率为的椭圆 D.离心率为3的双曲线4.曲线与直线围成的平面图形的面积为()A. B. C. D.5.如图,长方形的四个顶点为,,,,曲线经过点.现将一质点随机投入长方形中,则质点落在图中阴影区域外的概率是()A. B. C. D.6.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A. B.C. D.7.下列函数中,在定义域内单调的是()A. B.C. D.8.设,则使得的的取值范围是()A. B. C. D.9.下列说法正确的个数有()①用刻画回归效果,当越大时,模型的拟合效果越差;反之,则越好;②命题“,”的否定是“,”;③若回归直线的斜率估计值是,样本点的中心为,则回归直线方程是;④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。A.1个 B.2个 C.3个 D.4个10.已知,且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知满足,则的取值范围为()A. B. C. D.12.若的展开式中含有项的系数为8,则()A.2 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在棱长均为的正三棱柱中,________.14.如图是一个算法流程图,若输入的值为2,则输出的值为_______..15.计算的结果为______.16.为定义在上的奇函数,且,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知四棱锥的底面为菱形,且,,,与相交于点.(1)求证:底面;(2)求直线与平面所成的角的值;(3)求平面与平面所成二面角的值.(用反三角函数表示)18.(12分)如图,在矩形中,为CD的中点,将沿AE折起到的位置,使得平面平面.(1)证明:平面平面;(2)求平面与平面所成二面角的正弦值.19.(12分)已知等差数列的公差为,等差数列的公差为,设,分别是数列,的前项和,且,,.(1)求数列,的通项公式;(2)设,数列的前项和为,证明:.20.(12分)面对某种流感病毒,各国医疗科研机构都在研究疫苗,现有A、B、C三个独立的研究机构在一定的时期研制出疫苗的概率分别为SKIPIF1<0.求:(1)他们能研制出疫苗的概率;(2)至多有一个机构研制出疫苗的概率.21.(12分)在四棱锥中,四边形是平行四边形,且,.(1)求异面直线与所成角的余弦值;(2)若,,二面角的平面角的余弦值为,求的正弦值.22.(10分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球(Ⅰ)求取出的3个球中至少有一个红球的概率;(Ⅱ)求取出的3个球得分之和恰为1分的概率;(Ⅲ)设为取出的3个球中白色球的个数,求的分布列.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
令,即可求出,由即可求出【详解】令,得,所以,故选A。【点睛】本题主要考查赋值法的应用。2、B【解析】试题分析:由题意得,先选一名女教师作为流动监控员,共有种,再从剩余的人中,选两名监考员,一人在前方监考,一人在考场后监考,共有种,所以不同的安排方案共有种方法,故选B.考点:排列、组合的应用.3、C【解析】分析:由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状.详解:∵正四面体V﹣ABC∴面VBC不垂直面ABC,过P作PD⊥面ABC于D,过D作DH⊥BC于H,连接PH,可得BC⊥面DPH,所以BC⊥PH,故∠PHD为二面角V﹣BC﹣A的平面角令其为θ则Rt△PGH中,|PD|:|PH|=sinθ(θ为V﹣BC﹣A的二面角的大小).又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|∴|PV|:|PH|=sinθ<1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sinθ,又在正四面体V﹣ABC,V﹣BC﹣A的二面角的大小θ有:sinθ=<1,由椭圆定义知P点轨迹为椭圆在面SBC内的一部分.故答案为:C.点睛:(1)本题主要考查二面角、椭圆的定义、轨迹方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.(2)解答本题的关键是联想到圆锥曲线的第二定义.4、D【解析】
先作出直线与曲线围成的平面图形的简图,联立直线与曲线方程,求出交点横坐标,根据定积分即可求出结果.【详解】作出曲线与直线围成的平面图形如下:由解得:或,所以曲线与直线围成的平面图形的面积为.故选D【点睛】本题主要考查定积分的应用,求围成图形的面积只需转化为对应的定积分问题求解即可,属于常考题型.5、A【解析】
计算长方形面积,利用定积分计算阴影部分面积,由面积测度的几何概型计算概率即可.【详解】由已知易得:,由面积测度的几何概型:质点落在图中阴影区域外的概率故选:A【点睛】本题考查了面积测度的几何概型,考查了学生转化划归,数学运算的能力,属于基础题.6、D【解析】
由图形间的关系可以看出,每多出一个小金鱼,则要多出6根火柴棒,则火柴棒的个数组成了一个首项是8,公差是6的等差数列,写出通项,求出第n项的火柴根数即可.【详解】由图形间的关系可以看出,每多出一个小金鱼,则要多出6根火柴棒,第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+1×6个火柴组成,以此类推:组成n个系列正方形形的火柴棒的根数是8+6(n﹣1)∴第n个图中的火柴棒有6n+1.故选:D.【点睛】本题考查归纳推理,考查等差数列的通项,解题的关键是看清随着小金鱼的增加,火柴的根数的变化趋势,属于基础题.7、A【解析】
指数函数是单调递减,再判断其它选项错误,得到答案.【详解】A.,指数函数是单调递减函数,正确\B.反比例函数,在单调递减,在单调递减,但在上不单调,错误C.,在定义域内先减后增,错误D.,双勾函数,时先减后增,错误故答案选A【点睛】本题考查了函数的单调性,属于简单题.8、B【解析】分析:根据题意,由函数f(x)的解析式分析可得函数f(x)的图象关于直线x=1对称,当x≥1时,对函数f(x)求导分析可得函数f(x)在[1,+∞)上为减函数,则原不等式变形可得f(|x|)<f(|2x﹣3|),结合单调性可得|x|>|2x﹣3|,解可得x的取值范围,即可得答案.详解:根据题意,f(x)=﹣x2+2x﹣2(ex﹣1+e1﹣x)=﹣(x﹣1)2﹣2(ex﹣1+)+1,分析可得:y=﹣(x﹣1)2+1与函数y=2(ex﹣1+e1﹣x)都关于直线x=1对称,则函数f(x)=﹣x2+2x﹣2(ex﹣1+e1﹣x)的图象关于直线x=1对称,f(x)=﹣x2+2x﹣2(ex﹣1+e1﹣x),当x≥1时,f′(x)=﹣2x+2﹣(ex﹣1﹣)=﹣2(x+1+ex﹣1﹣),又由x≥1,则有ex﹣1≥,即ex﹣1﹣≥0,则有f′(x)<0,即函数f(x)在[1,+∞)上为减函数,f(x+1)<f(2x﹣2)⇒f(|x+1﹣1|)<f(|2x﹣2﹣1|)⇒f(|x|)<f(|2x﹣3|)⇒|x|>|2x﹣3|,变形可得:x2﹣4x+3<0,解可得1<x<3,即不等式的解集为(1,3);故选:B.点睛:处理抽象不等式问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.9、C【解析】分析:结合相关系数的性质,命题的否定的定义,回归方程的性质,推理证明即可分析结论.详解:①为相关系数,相关系数的结论是:越大表明模拟效果越好,反之越差,故①错误;②命题“,”的否定是“,”;正确;③若回归直线的斜率估计值是,样本点的中心为,则回归直线方程是;根据回归方程必过样本中心点的结论可得③正确;④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。根据综合法和分析法定义可得④的描述正确;故正确的为:②③④故选C.点睛:考查命题真假的判断,对命题的逐一分析和对应的定义,性质的理解是解题关键,属于基础题.10、C【解析】分析:已知,解出a,b的值,再根据充分条件和必要条件的定义进行求解.详解:a>0,b>0且a≠1,若logab>0,a>1,b>1或0<a<1,0<b<1,∴(a-1)(b-1)>0;若(a-1)(b-1)>0,则或则a>1,b>1或0<a<1,0<b<1,∴logab>0,∴“logab>0”是“(a-1)(b-1)>0”的充分必要条件.故选C.点睛:在判断充分、必要条件时需要注意:(1)确定条件是什么、结论是什么;(2)尝试从条件推导结论,从结论推导条件;(3)确定条件是结论的什么条件.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题.11、D【解析】由题意,令,所以,所以,因为,所以所以所以,故选D.12、A【解析】展开式中含有项的系数,,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
首先画出正三棱柱,求出边长和,最后求面积.【详解】因为是正三棱柱,并且棱长都为1,是腰长为,底边长为1的等腰三角形,所以底边的高,.故答案为【点睛】本题考查几何体中几何量的求法,意在考查空间想象能力,属于基础题型.14、5【解析】
直接模拟程序即可得结论.【详解】输入的值为2,不满足,所以,故答案是:5.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有程序框图的输出结果的求解,属于简单题目.15、【解析】
利用指数运算、对数运算的性质即可得出.【详解】原式
.
故答案为:.【点睛】本题考查了指数运算性质,对数的运算性质,考查了推理能力与计算能力,属于中档题.16、【解析】
根据已知将x=x+2代入等式可得,可知为周期T=4的周期函数,化简,再由奇函数的性质可得其值.【详解】由题得,则有,因为为定义在R上的奇函数,那么,则,故.【点睛】本题考查奇函数的性质和周期函数,属于常见考题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3)【解析】
(1)由已知中四棱锥P−ABCD的底面ABCD为菱形,且∠ABC=60°,PB=PD=AB=2,PA=PC,AC与BD相交于点O,根据平行四边形两条对角线互相平分及等腰三角形三线合一,结合线面垂直的判定定理,我们易得到结论;
(2)以O为坐标原点,建立坐标系,分别求出各顶点坐标,进而求出直线
PB的方向向量与平面PCD的法向量,代入线面夹角的向量法公式,即可求出答案;(3)求出平面的法向量,代入面面夹角的向量法公式,即可求出答案.【详解】(1)证明:因为ABCD为菱形,
所以O为AC,BD的中点
因为PB=PD,PA=PC,
所以PO⊥BD,PO⊥AC
所以PO⊥底面ABCD;
(2)解:因为ABCD为菱形,所以AC⊥BD,
建立如图所示空间直角坐标系
又∠ABC=60°,PA=AB=2
得,
所以则,
设平面PCD的法向量
有,所以,令
得,
,
直线与平面所成的角的值为;(3)设平面的法向量,因为
有,所以,令
得,,
由图知,平面与平面所成二面角为钝角,.【点睛】本题考查的知识点是用空间向量求直线与平面的夹角,直线与平面垂直的判定,直线与平面所成的角,其中选择合适的点及坐标轴方向,建立空间坐标系,将问题转化为一个向量问题是解答此类问题的关键.18、(1)证明见解析;(2).【解析】
(1)由题可得,即,由平面平面,根据面面垂直的性质可得平面,从而证明平面平面;(2)结合(1),如图建立空间直角坐标系,分别求出平面与平面的法向量,由二面角的余弦公式求出余弦值,从而可得到平面与平面所成二面角的正弦值.【详解】(1)证明:设,在矩形中,由为的中点,易求得:,所以.所以.又因为平面平面,平面平面,所以平面.又平面,所以平面平面.(2)设,取中点,连接﹐由,得,所以.又平面平面,平面平面,故平面.如图,以为坐标原点,分别以,的方向为轴,轴正方向建立空间直角坐标系,依题意得:.,由(1)知平面,故可取平面的法向量为,设平面的法向量为,则,即不妨取,得,设平面与平面所成二面角为θ,,则,所以平面与平面所成二面角的正弦值为.【点睛】本题考查立体几何中面面垂直的证明以及二面角的正弦值的求法,考查利用空间向量解决问题的能力,属于中档题.19、(1),;(2)见解析【解析】
(1)由等差数列的通项公式及求和公式列的方程组求解则可求,进而得(2)利用分组求和即可证明【详解】(1)因为数列,是等差数列,且,,所以.整理得,解得,所以,即,,即.综上,,.(2)由(1)得,所以,即.【点睛】本题考查等差数列的通项公式及求和公式,裂项相消求和,考查推理计算能力,是中档题20、(1)(2)【解析】试题分析:记A、B、C分别表示他们研制成功这件事,则由题意可得P(A)=,P(B)=,P(C)=.(1)他们都研制出疫苗的概率P(ABC)=P(A)•P(B)•P(C),运算求得结果.(2)他们能够研制出疫苗的概率等于,运算求得结果试题解析:设“A机构在一定时期研制出疫苗”为事件D,“B机构在一定时期研制出疫苗”为事件E,“C机构在一定时期研制出疫苗”为事件F,则P(D)=SKIPIF1<0,P(E)=SKIPIF1<0,P(F)=SKIPIF1<0(1)P(他们能研制出疫苗)=1-P(SKIPIF1<0)=SKIPIF1<0=SKIPIF1<0(2)P(至多有一个机构研制出疫苗)=SKIPIF1<0SKIPIF1<0)=SKIPIF1<0+SKIPIF1<0+SKIPIF1<0+P(SKIPIF1<0)=SKIPIF1<
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计师事务所兼职合同范本:工作职责与权益保障
- 2024解除劳动合同的问题
- 国家级代理授权经营合同范本
- 2024新版广告合同格式
- 医院与社区合作协议
- 2024年度别墅电梯定制安装合同
- 2024建筑材料的购销合同范本
- 2024年专用电缆采购合同
- 2024苗圃土地承包合同模板
- 工程项目协作股权协议范例
- 《创意改善生活》课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 2024-2025学年 浙教版七年级数学上册期中(第1-4章)培优试卷
- 个人简历模板(5套完整版)
- CHT 1027-2012 数字正射影像图质量检验技术规程(正式版)
- 劳务派遣劳务外包服务方案(技术方案)
- 工期日历天计算器
- 相敏检波电路
- 第一章特殊教育概述-特殊教育概论(共4页)
- (完整版)装修主要材料一览表
- 排球正面下手发球教学设计
- 给4S店精品销售的几点建议
评论
0/150
提交评论