版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数与几何综合压轴题题型归纳PAGE1PAGE4杭州龙文教育科技有限公司湖墅校区学生:科目:数学教师:课题函数的综合压轴题型归类教学目标要学会利用特殊图形的性质去分析二次函数与特殊图形的关系掌握特殊图形面积的各种求法重点、难点利用图形的性质找点分解图形求面积教学内容一、二次函数和特殊多边形形状二、二次函数和特殊多边形面积三、函数动点引起的最值问题四、常考点汇总4、二次函数与轴的交点为整数点问题。(方法同上)例:若抛物线与轴交于两个不同的整数点,且为正整数,试确定此抛物线的解析式。5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:已知关于的方程(为实数),(2)如图,直线、相交,两个固定点、,分别在、上确定两点、,使得之和最小。(3)如图,是直线同旁的两个定点,线段,在直线上确定两点、(在的左侧),使得四边形的周长最小。8、在平面直角坐标系中求面积的方法:直接用公式、割补法三角形的面积求解常用方法:如右图,S△PAB=1/2·PM·△x=1/2·AN·△y9、函数的交点问题:二次函数()与一次函数()(1)解方程组可求出两个图象交点的坐标。(2)解方程组,即,通过可判断两个图象的交点的个数有两个交点仅有一个交点没有交点10、方程法(1)设:设主动点的坐标或基本线段的长度(2)表示:用含同一未知数的式子表示其他相关的数量(3)列方程或关系式11、几何分析法特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。几何要求几何分析涉及公式应用图形跟平行有关的图形平移、平行四边形矩形梯形跟直角有关的图形勾股定理逆定理利用相似、全等、平行、对顶角、互余、互补等直角三角形直角梯形矩形跟线段有关的图形利用几何中的全等、中垂线的性质等。等腰三角形全等等腰梯形跟角有关的图形利用相似、全等、平行、对顶角、互余、互补等【例题精讲】OxyAOxyABCD一基础构图:y=(以下几种分类的函数解析式就是这个)★和最小,差最大在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标OOxyABCD★求面积最大连接AC,在第四象限找一点P,使得面积最大,求出P坐标OxyAOxyABCD求出P坐标或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.讨论等腰三角连接AC,在对称轴上找一点P,使得为等腰三角形,求出P坐标OOxyABCD讨论平行四边形1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标二综合题型例1(中考变式)如图,抛物线与x轴交与A(1,0),B(-3,0)两点,顶点为D。交Y轴于C(1)求该抛物线的解析式与△ABC的面积。(2)在抛物线第二象限图象上是否存在一点M,使△MBC是以∠BCM为直角的直角三角形,若存在,求出点P的坐标。若没有,请说明理由(3)若E为抛物线B、C两点间图象上的一个动点(不与A、B重合),过E作EF与X轴垂直,交BC于F,设E点横坐标为x.EF的长度为L,求L关于X的函数关系式?关写出X的取值范围?当E点运动到什么位置时,线段EF的值最大,并求此时E点的坐标?(4)在(5)的情况下直线BC与抛物线的对称轴交于点H。当E点运动到什么位置时,以点E、F、H、D为顶点的四边形为平行四边形?(5)在(5)的情况下点E运动到什么位置时,使三角形BCE的面积最大?
例2考点:关于面积最值如图,在平面直角坐标系中,点A、C的坐标分别为(-10)、(0),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.yxyxBAFPx=1CO(2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.例3考点:讨论等腰如图,已知抛物线y=x2+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;BCOA备用图yx(3)在直线BC上是否存在一点PBCOA备用图yxDDBCOAyxE例4考点:讨论直角三角⑴如图,已知点A(一1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有().(A)2个(B)4个(C)6个(D)7个⑵已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC的面积S;OAByCxDE2(3)在x轴上是否存在点POAByCxDE2例5考点:讨论四边形已知:如图所示,关于x的抛物线y=ax2+x+c(a≠0)与x轴交于点A(-2,0),点B(6,0),与y轴交于点C.(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.BBAyOCx综合练习:1、平面直角坐标系xOy中,抛物线与x轴交于点A、点B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC,抛物线的顶点为D。(1)求此抛物线的解析式;(2)若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;(3)Q为线段BD上一点,点A关于∠AQB的平分线的对称点为,若,求点Q的坐标和此时△的面积。2、在平面直角坐标系中,已知二次函数的图像与轴交于点,与轴交于A、B两点,点B的坐标为。(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△的面积最大?最大面积是多少?并求出此时点P的坐标。3、如图,在平面直角坐标系中,抛物线与轴负半轴交于点,顶点为,且对称轴与轴交于点。(1)求点的坐标(用含的代数式表示);(2)为中点,直线交轴于,若(0,2),求抛物线的解析式;(3)在(2)的条件下,点在直线上,且使得的周长最小,在抛物线上,在直线上,若以为顶点的四边形是平行四边形,求点的坐标。4、已知关于的方程。(1)若方程有两个不相等的实数根,求的取值范围;(2)若正整数满足,设二次函数的图象与轴交于两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象;请你结合这个新的图象回答:当直线与此图象恰好有三个公共点时,求出的值(只需要求出两个满足题意的k值即可)。5如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.三、中考二次函数代数型综合题题型一、抛物线与x轴的两个交点分别位于某定点的两侧例1.已知二次函数y=x2+(m-1)x+m-2的图象与x轴相交于A(x1,0),B(x2,0)两点,且x1<x2.(1)若x1x2<0,且m为正整数,求该二次函数的表达式;(2)若x1<1,x2>1,求m的取值范围;(3)是否存在实数m,使得过A、B两点的圆与y轴相切于点C(0,2),若存在,求出m的值;若不存在,请说明理由;(4)若过点D(0,EQ\F(1,2))的直线与(1)中的二次函数图象相交于M、N两点,且EQ\F(MD,DN)=EQ\F(1,3),求该直线的表达式.题型二、抛物线与x轴两交点之间的距离问题例2已知二次函数y=x2+mx+m-5,(1)求证:不论m取何值时,抛物线总与x轴有两个交点;(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.题型三、抛物线方程的整数解问题已知抛物线与x轴的两个交点的横坐标均为整数,且m<5,则整数m的值为_____________例2.已知二次函数y=x2-2mx+4m-8.(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围;AOxy(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正(M,N两点在拋物线上),请问:△AMN的面积是与AOxy(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数m的值.题型四、抛物线与对称,包括:点与点关于原点对称、抛物线的对称性、数形结合例1.已知抛物线(其中b>0,c≠0)与y轴的交点为A,点A关于抛物线对称轴的对称点为B(m,n),且AB=2.(1)求m,b的值(2)如果抛物线的顶点位于x轴的下方,且BO=。求抛物线所对应的函数关系式(友情提醒:请画图思考)题型五、抛物线中韦达定理的广泛应用(线段长、定点两侧、点点关于原点对称、等等)例1.已知:二次函数的图象与x轴交于不同的两点A(,0)、B(,0)(<),其顶点是点C,对称轴与x轴的交于点D.(1)求实数m的取值范围;(2)如果(+1)(+1)=8,求二次函数的解析式;(3)把(2)中所得的二次函数的图象沿y轴上下平移,如果平移后的函数图象与x轴交于点、,顶点为点C1,且△是等边三角形,求平移后所得图象的函数解析式.综合提升1.已知二次函数的图象与x轴交于A,B两点,与y轴交于点C(0,4),且|AB|=2eq\r(,3),图象的对称轴为x=1.(1)求二次函数的表达式;(2)若二次函数的图象都在直线y=x+m的下方,求m的取值范围.2.已知二次函数y=-x2+mx-m+2.(1)若该二次函数图象与x轴的两个交点A、B分别在原点的两侧,并且AB=eq\r(,5),求m的值;(2)设该二次函数图象与y轴的交点为C,二次函数图象上存在关于原点对称的两点M、N,且S△MNC=27,求m的值.3.已知关于x的一元二次方程x2-2(k+1)x+k2=0有两个整数根,k<5且k为整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2-2(k+1)x+k2的图象沿x轴向左平移4个单位,求平移后的二次函数图象的解析式;(3)根据直线y=x+b与(2)中的两个函数图象交点的总个数,求b的取值范围.4.已知二次函数的图象经过点A(1,0)和点B(2,1),且与y轴交点的纵坐标为m.(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围;(3)若二次函数的图象截直线y=-x+1所得线段的长为2eq\r(,2),求m的值.四、中考二次函数定值问题1.(2012江西南昌8分)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A.B两点(点A在点B左边),与y轴交于点C.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.2.(2012山东潍坊11分)如图,已知抛物线与坐标轴分别交于A(-2,O)、B(2,0)、C(0,-l)三点,过坐标原点O的直线y=kx与抛物线交于M、N两点.分别过点C、D(0,-2)作平行于x轴的直线、.(1)求抛物线对应二次函数的解析式;(2)求证以ON为直径的圆与直线相切;(3)求线段MN的长(用k表示),并证明M、N两点到直线的距离之和等于线段MN的长.3.(2012浙江义乌12分)如图1,已知直线y=kx与抛物线交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 林权转让咨询服务合同
- 电子产品组装操作流程
- 专利权许可合约
- 2025年度矿山矿产资源开采权转让与环境保护协议3篇
- 食品行业财务竞争力分析
- 车站服务员制服管理办法
- 小学安全守护者聘用合同
- 人才梯队发展规划制定
- 2025年度旅游景区安全生产管理协议3篇
- 2025版酒店家具租赁、回收及环保处理合同2篇
- 安全月度例会汇报材料模板
- 大国兵器学习通超星期末考试答案章节答案2024年
- 期末综合素养评价 (三)(试题)-2024-2025学年一年级上册数学
- 《税费计算与申报》课程标准(含课程思政)
- 2024年无子女离婚协议书范文百度网盘
- UNIT 4 Section Ⅳ Lesson 3 My Favourite Comedian 学案 高中英语北师大版 (选择性必修第二册)
- 24秋国家开放大学《0-3岁婴幼儿的保育与教育》期末大作业参考答案
- 流行病学学习通超星期末考试答案章节答案2024年
- 开源软件组件漏洞检测与自动修复技术研究综述
- 海南省三亚市(2024年-2025年小学三年级语文)人教版期末考试(上学期)试卷(含答案)
- 教科版六年级上册科学第四单元第5课《电磁铁》同步练习(含答案)
评论
0/150
提交评论