版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页数据结构第五章图习题
05图
【单选题】
1.设无向图G中有五个顶点,各顶点的度分别为2、4、3、1、2,则G中边数为(C)。A、4条B、5条C、6条D、无法确定
2.含n个顶点的无向完全图有(D)条边;含n个顶点的有向图最多有(C)条弧;含n个顶点的有向强连通图最多有(C)条弧;含n个顶点的有向强连通图最少有(F)条弧;设无向图中有n个顶点,则要接通全部顶点至少需(G)条边。
A、n2B、n(n+1)C、n(n-1)D、n(n-1)/2E、n+1F、nG、n-1
3.对下图从顶点a出发进行深度优先遍历,则(A)是可能得到的遍历序列。A、acfgdebB、abcdefgC、acdgbefD、abefgcd
对下图从顶点a出发进行广度优先遍历,则(D)是不可能得到的遍历序列。A、abcdefgB、acdbfgeC、abdcegfD、adcbgef
?010???4.设图G的邻接矩阵A=101,则G中共有(C)个顶点;若G为有向图,则G中共有(D)????010??条弧;若G为无向图,则G中共有(B)条边。
A、1B、2C、3D、4E、5F、9G、以上答案都不对
5.含n个顶点的图,最少有(B)个连通分量,最多有(D)个连通分量。A、0B、1C、n-1D、n
6.用邻接表存储图所用的空间大小(A)。
A、与图的顶点数和边数都有关B、只与图的边数有关C、只与图的顶点数有关D、与边数的平方有关
7.n个顶点的无向图的邻接表最多有(B)个表结点。A、n2B、n(n-1)C、n(n+1)D、n(n-1)/2
8.无向图G=(V,E),其中:V={a,b,c,d,e,f},E={(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)},对该图进行深度优先遍历,得到的顶点序列正确的是(D)。
A、a,b,e,c,d,fB、a,c,f,e,b,dC、a,e,b,c,f,dD、a,e,d,f,c,b
9.图的BFS生成树的树高比DFS生成树的树高(A)。A、小或相等B、小C、大或相等D、大
10.下列不正确的是(C)。
(1)求从指定源点到其余各顶点的迪杰斯特拉(Dijkstra)最短路径算法中弧上权不能为负的原因是在实际应用中无意义;
(2)利用Dijkstra求每一对不同顶点之间的最短路径的算法时间是O(n3);(图用邻接矩阵表示)(3)Floyd求每对不同顶点对的算法中允许弧上的权为负,但不能有权和为负的回路。A、(1),(2),(3)B、(1)C、(1),(3)D、(2),(3)
11.当各边上的权值(A)时,BFS算法可用来解决单源最短路径问题。A、均相等B、均互不相等C、不一定相等
12.若一个有向图具有拓扑排序序列,那么它的邻接矩阵必定为(C)。A、对称矩阵B、稀疏矩阵C、三角矩阵D、一般矩阵
13.在有向图G的拓扑序列中,若顶点Vi在顶点Vj之前,则下列情形不可能出现的是(D)。A、G中有弧B、G中有一条从Vi到Vj的路径C、G中没有弧D、G中有一条从Vj到Vi的路径
14.关键路径是AOE网中(B)。
A、从始点到终点的最短路径B、从始点到终点的最长路径
C、人始点到终点的边数最多的路径D、从始点到终点的边数最少的路径
15.下面关于求关键路径的说法不正确的是(C)。A、求关键路径是以拓扑排序为基础的
B、一个事件的最早开始时间同以该事件为尾的弧的活动最早开始时间相同
C、一个事件的最迟开始时间为以该事件为尾的弧的活动最迟开始时间与该活动的持续时间的差D、关键活动一定位于关键路径上
【填空题】
1.设无向连通图G含n个顶点e条边,则G的生成树含个顶点条边。2.连通分量是无向图的子图,生成树是无向连通图的子图。3.对稀疏图而言,在邻接矩阵和邻接表这两种存储结构中选择更为适宜。4.设无向图G含n个顶点e条边,则G的邻接表表示中含个边表结点。5.设有向图G含n个顶点e条弧,则G的邻接表表示中含个边表结点。
【计算题】
1.设无向图如下,写出对该图从顶点a出发进行广度优先遍历可能得到的所有遍历序列。
解:abcdefg、abdcegf、acbdfeg、acdbfge、adbcgef、adcbgfe。
2.设有向图如下,写出对该图从顶点a出发进行深度优先遍历可能得到的所有遍历序列。
解:abedc、acbed、acdbe。
3.设无向网如下,(1)写出其邻接矩阵;(2)基于该邻接矩阵求深度优先生成树和广度优先生成树;(3)基于该邻接矩阵按普里姆算法求最小生成树;(4)写出其邻接表;(5)基于该邻接表按克鲁斯卡尔算法求最小生成树。
解:???4??3(1)??????????????4?559???35?5???5?55?7654?9?7?3?????63?2????5?2?6?????5??4??????6?????(2)深度优先生成树:;广度优先生成树:
(3)最小生成树:;求解过程:
(4)邻接表:
(5)最小生成树:
4.设AOV图如下,写出对该图进行拓扑排序可能得到的所有拓扑序列。
解:abcdefg、abcdfeg、abcfdeg
5.设AOE网如下,试求关键路径。
解:关键路径1:v1→v2→v5→v7关键路径2:v1→v3→v6→v7。
6.设有向网如下,试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44726-2024科技评估人员能力评价规范
- GB/T 44810.3-2024IPv6 网络安全设备技术要求第3部分:入侵防御系统(IPS)
- 2024年度电气设备维护与保养服务合同3篇
- 2024年度物流与供应链管理合同
- 2024年度广告发布合同:品牌宣传与推广服务2篇
- 《vr太阳光设定基础》课件
- 2024年度供应链管理系统开发合同5篇
- 2024年度企业资产转让合同(含市场准入)
- 2024年度大连龙门吊安全检测与维修服务合同
- 2024年度旅游服务合同导游安排与责任
- 便携式气体检测仪使用方法(课堂PPT)
- 高中论文从建构理论看高中化学CAI软件的课题选择
- 安全文明施工设施配置清单
- 圆的旋转问题
- 小学生升学择校个人简历模板
- 幼儿园教研主题30篇
- 十三辙《韵辙表》——合辙押韵必备正式版
- 应用随机过程PPT课件
- 初中美术课说课稿(课堂PPT)
- YY∕T 0106-2021 医用诊断X射线机通用技术条件
- intouch关系数据库-ODBC配置实例教程
评论
0/150
提交评论