版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.的整数部分是()A.3 B.5 C.9 D.62.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为()A.6 B.8 C.10 D.123.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠44.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1045.从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是()A. B. C. D.6.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30° B.60° C.50° D.40°7.对于任意实数k,关于x的方程的根的情况为A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.无法确定8.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定9.下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.410.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=13二、填空题(共7小题,每小题3分,满分21分)11.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.12.如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BC>AB,AB∥CD,AB=4,BD=213,tan∠BAC=33,则线段BC的长是_____.13.分解因式:ab2﹣9a=_____.14.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.15.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.16.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是.17.点(1,–2)关于坐标原点O的对称点坐标是_____.三、解答题(共7小题,满分69分)18.(10分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。(1)如图1,若△ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.19.(5分)计算:.20.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B
70≤x<80
30
aC
80≤x<90
b
0.45D
90≤x<100
8
0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.21.(10分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.成绩分组
组中值
频数
25≤x<30
27.5
4
30≤x<35
32.5
m
35≤x<40
37.5
24
40≤x<45
a
36
45≤x<50
47.5
n
50≤x<55
52.5
4
(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?22.(10分)解不等式组,并把解集在数轴上表示出来.23.(12分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.24.(14分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.2、C【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA∵△ABC是等腰三角形,点D是BC边上的中点∴∴解得∵EF是线段AC的垂直平分线∴点A关于直线EF的对称点为点C∴∵∴AD的长为BM+MD的最小值∴△CDM的周长最短故选:C.【点睛】本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.3、C【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥1且≠2,解得:a≥1且a≠4,故选C.点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.4、D【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10700=1.07×104,
故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、C【解析】
根据有理数的定义可找出在从,0,π,,6这5个数中只有0、、6为有理数,再根据概率公式即可求出抽到有理数的概率.【详解】∵在,0,π,,6这5个数中有理数只有0、、6这3个数,∴抽到有理数的概率是,故选C.【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.6、A【解析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.7、C【解析】判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:∵a=1,b=,c=,∴.∴此方程有两个不相等的实数根.故选C.8、B.【解析】试题解析:∵OP=5,∴根据点到圆心的距离等于半径,则知点在圆上.故选B.考点:1.点与圆的位置关系;2.坐标与图形性质.9、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B.考点:简单几何体的三视图10、A【解析】
要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】
利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.【详解】a2+b2﹣8a﹣4b+20=0,a2﹣8a+16+b2﹣4b+4=0,(a﹣4)2+(b﹣2)2=0a﹣4=0,b﹣2=0,a=4,b=2,则a2﹣b2=16﹣4=1,故答案为1.【点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.12、6【解析】
作DE⊥AB,交BA的延长线于E,作CF⊥AB,可得DE=CF,且AC=AD,可证Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根据tan∠BAC=∠DAE=DEAE=33【详解】如图:作DE⊥AB,交BA的延长线于E,作CF⊥AB,∵AB∥CD,DE⊥AB⊥,CF⊥AB∴CF=DE,且AC=AD∴Rt△ADE≌Rt△AFC∴AE=AF,∠DAE=∠BAC∵tan∠BAC=33∴tan∠DAE=33∴设AE=a,DE=33a在Rt△BDE中,BD2=DE2+BE2∴52=(4+a)2+27a2解得a1=1,a2=-97∴AE=1=AF,DE=33=CF∴BF=AB-AF=3在Rt△BFC中,BC=BF2【点睛】本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可.13、a(b+3)(b﹣3).【解析】
根据提公因式,平方差公式,可得答案.【详解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).【点睛】本题考查了因式分解,一提,二套,三检查,分解要彻底.14、.【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可.【详解】设这两天此股票股价的平均增长率为x,由题意得(1﹣10%)(1+x)2=1.故答案为:(1﹣10%)(1+x)2=1.【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为15、6【解析】设这个扇形的半径为,根据题意可得:,解得:.故答案为.16、2.【解析】
先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.【详解】由点A(3,n)在双曲线y=上得,n=2.∴A(3,2).∵线段OA的垂直平分线交OC于点B,∴OB=AB.则在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周长的值是2.17、(-1,2)【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】A(1,-2)关于原点O的对称点的坐标是(-1,2),
故答案为:(-1,2).【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.三、解答题(共7小题,满分69分)18、(1);(2)点P的坐标为;(3).【解析】
(1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;(2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;(3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.【详解】(1)若△ABC为直角三角形∴△AOC∽△COB∴OC2=AO•OB当y=0时,0=x2-x-n由一元二次方程根与系数关系-OA•OB=OC2n2==−2n解得n=0(舍去)或n=2∴抛物线解析式为y=;(2)由(1)当=0时解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵抛物线对称轴为直线x=-=−∴设点Q坐标为(,b)由平行四边形性质可知当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)代入y=x2-x-2解得b=,则P点坐标为(,)当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)代入y=x2-x-2解得b=,则P坐标为(-,)综上点P坐标为(,),(-,);(3)设点D坐标为(a,b)∵AE:ED=1:4则OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根与系数关系得,∴b=a2将点A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)则n=.【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.19、【解析】
直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.【详解】原式=9﹣2+1﹣2=.【点睛】本题考查了实数运算,正确化简各数是解题的关键.20、(1)0.3,45;(2)108°;(3).【解析】
(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)详见解析(2)2400【解析】
(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【详解】解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=100﹣4﹣12﹣24﹣36﹣4=1.补全频数分布直方图如下:(2)∵优秀的人数所占的比例是:=0.6,∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)22、﹣1≤x<1.【解析】
求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<1.不等式组的解集在数轴上表示如下:23、(3)a=,方程的另一根为;(2)答案见解析.【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.【详解】(3)将x=2代入方程,得,解得:a=.将a=代入原方程得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《智慧水利》2022-2023学年第一学期期末试卷
- 石河子大学《外国文学一》2021-2022学年第一学期期末试卷
- 石河子大学《化工仪表及自动化》2023-2024学年第一学期期末试卷
- 沈阳理工大学《展示空间设计》2022-2023学年第一学期期末试卷
- 沈阳理工大学《汽车理论》2023-2024学年第一学期期末试卷
- 沈阳理工大学《工控组态软件及应用》2022-2023学年第一学期期末试卷
- 管道保温工程合同协议书
- 光明租赁合同
- 合同编司法解释27解读
- 2024肉类采购合同样本
- 2024年度智能家居解决方案合同
- 2024年四川省达州市中考英语试题含解析
- 金融求职自我介绍
- 标志设计(全套课件88P)
- 2023年高考物理一轮复习练习题:静电场及其应用(含基础、提升两套)
- 2024年云网安全应知应会考试题库
- 小学道德与法治《中华民族一家亲》完整版课件部编版
- DL-T 5190.1-2022 电力建设施工技术规范 第1部分:土建结构工程(附条文说明)
- 经纬度数转换工具
- 一年级家长进课堂电的知识(课堂PPT)
- 最新高中物理学考公式大全
评论
0/150
提交评论