下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2023人教版初中数学考纲考点
人教版初中数学考纲考点
1.抛物线与x轴交点个数
Δ=b^2-4ac0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
_______
Δ=b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
当a0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是减函数,在
{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
特殊值的形式
2.特殊值的形式
①当x=1时y=a+b+c
②当x=-1时y=a-b+c
③当x=2时y=4a+2b+c
④当x=-2时y=4a-2b+c
3.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a0,则抛物线开口朝上;a0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ0,图象与x轴无交点;
②y=a(x-h)^2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2当a0且X≧(X1+X2)/2时,Y随X的增大而增大,当a0且X≦(X1+X2)/2时Y随x的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方连
用)。
交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1X2值。
初中数学考纲考点
一.知识框架
二.知识概念
一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q0,方程无实根.
介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(3)一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.
初中数学考点
一、因式分解的概念:
多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止。
二、分解因式的常用方法有:
1.提公因式法;2..公式法;3.十字相乘法;4.分组分解法;5.求根公式法。
三、因式分解的步骤及注意事项:
1.一般步骤:“一提”:先考虑是否有公因式,如果有公因式,应先提公因式;“二套”:再考虑能否运用公式法分解因式,一般的根据多项式的项数选择公式,二项式考虑用平方差公式,三项式考虑用完全平方公式或十字相乘法,更多项的多项式,应分组分解.
2.分解因式需要注意事项:分解因式必须彻底,应进行到每个因式都不能在分解为止;分解因式要注意,是在有理数范围内,还是在实数范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 可爱的草塘- 课件
- 《论文写作》课程课件
- 内蒙古鄂尔多斯西部四旗2025届高三下第一次测试数学试题含解析
- 湖北省沙洋县后港中学2025届高考英语五模试卷含解析
- 浙江省乐清市知临中学2025届高三二诊模拟考试英语试卷含解析
- 吉林省长春二中2025届高考数学四模试卷含解析
- 陕西省西安市长安区2025届高三下学期联合考试数学试题含解析
- 2025届天津五区县高考考前提分语文仿真卷含解析
- 现代学徒制课题:市域产教联合体与行业产教融合共同体内开展现场工程师培养的机制创新研究(研究思路模板、技术路线图)
- 2025届四川省德阳五中高考仿真卷语文试卷含解析
- 发酵酸菜加工厂建设项目可行性研究报告
- 包豪斯对现代设计的影响
- 基于分形结构的多频与宽带天线技术研究
- 人间生活-中国部分+课件高中美术湘美版(2019)美术鉴赏1
- YY/T 1771-2021弯曲-自由恢复法测试镍钛形状记忆合金相变温度
- LY/T 1755-2008国家湿地公园建设规范
- JJF 1874-2020(自动)核酸提取仪校准规范
- GB/T 7378-2012表面活性剂碱度的测定滴定法
- GB/T 37762-2019同步调相机组保护装置通用技术条件
- GB/T 36961-2018超高强钢热冲压工艺通用技术
- 国开Photoshop图像处理模式试题1及答案
评论
0/150
提交评论