版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线在点处的切线方程为A. B. C. D.2.已知集合,则()A. B.C. D.3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直分别为直角三角形的斜边,直角边,.若,,在整个图形中随机取一点,则此点取自阴影部分的概率为()()A. B.C. D.4.已知随机变量,若,则的值为()A.0.1 B.0.3 C.0.6 D.0.45.已知为虚数单位,若复数满足,则()A. B.C. D.6.函数导数是()A. B. C. D.7.执行如图所示的程序框图,若输入x值满足则输出y值的取值范围是()A. B. C. D.8.若,则复数在复平面上对应的点在A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知是离散型随机变量,,,,则()A. B. C. D.10.是虚数单位,若,则的值是()A. B. C. D.11.把座位编号为1,2,3,4,5,6的六张电影票全部分给甲、乙、丙、丁四个人,每人最多得两张,甲、乙各分得一张电影票,且甲所得电影票的编号总大于乙所得电影票的编号,则不同的分法共有()A.90种 B.120种 C.180种 D.240种12.已知袋中装有除颜色外完全相同的5个球,其中红球2个,白球3个,现从中任取1球,记下颜色后放回,连续摸取3次,设ξ为取得红球的次数,则PA.425 B.36125 C.9二、填空题:本题共4小题,每小题5分,共20分。13.如图,边长为的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒粒豆子,粒中有粒落在阴影区域,则阴影区域的面积约为__________.14.将红、黄、蓝三种颜色的三颗棋子分别放入方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,且不在方格图所在正方形的同一条对角线上,则不同放法共有________种.15.已知(为常数),对任意,均有恒成立,下列说法:①的周期为6;②若(为常数)的图像关于直线对称,则;③若,且,则必有;④已知定义在上的函数对任意均有成立,且当时,;又函数(为常数),若存在使得成立,则实数的取值范围是,其中说法正确的是_______(填写所有正确结论的编号)16.若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题,使;命题,使.(1)若命题为假命题,求实数的取值范围;(2)若为真命题,为假命题,求实数的取值范围.18.(12分)在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)写出曲线的普通方程;(2)若直线与曲线有两个不同的交点,求的取值范围.19.(12分)已知函数.(1)若函数在区间上单调递增,求的取值范围;(2)设函数,若存在,使不等式成立,求实数的取值范围.20.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求和的直角坐标方程;(2)设M,N分别为,上的动点,求的取值范围.21.(12分)某班要从6名男生4名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数结果用数字作答.(1)所安排的男生人数不少于女生人数;(2)男生甲必须是课代表,但不能担任语文课代表;(3)女生乙必须担任数学课代表,且男生甲必须担任课代表,但不能担任语文课代表.22.(10分)下表为2015年至2018年某百货零售企业的年销售额(单位:万元)与年份代码的对应关系,其中年份代码年份-2014(如:代表年份为2015年)。年份代码1234年销售额105155240300(1)已知与具有线性相关关系,求关于的线性回归方程,并预测2019年该百货零售企业的年销售额;(2)2019年,美国为遏制我国的发展,又祭出“长臂管辖”的霸权行径,单方面发起对我国的贸易战,有不少人对我国经济发展前景表示担忧.此背景下,某调查平台为了解顾客对该百货零售企业的销售额能否持续增长的看法,随机调查了60为男顾客、50位女顾客,得到如下列联表:持乐观态度持不乐观态度总计男顾客451560女顾客302050总计7535110问:能否在犯错误的概率不超过0.05的前提下认为对该百货零售企业的年销售额持续增长所持的态度与性别有关?参考公式及数据:回归直线方程,0.100.050.0250.0100.0052.7063.8415.0246.6357.879
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据题意可知,结合导数的几何意义,先对函数进行求导,求出点处的切线斜率,再根据点斜式即可求出切线方程。【详解】由题意知,因此,曲线在点处的切线方程为,故答案选C。【点睛】本题主要考查了利用导数的几何意义求切线方程,一般利用点斜式构造直线解析式。2、D【解析】,所以,故选B.3、D【解析】
首先计算出图形的总面积以及阴影部分的面积,再根据几何概型的概率计算公式计算可得.【详解】解:因为直角三角形的斜边为,,,所以,以为直径的圆面积为,以为直径的圆面积为,以为直径的圆面积为.所以图形总面积,,所以.故选:【点睛】本题考查面积型几何概型的概率计算问题,属于基础题.4、D【解析】
根据题意随机变量可知其正态分布曲线的对称轴,再根据正态分布曲线的对称性求解,即可得出答案.【详解】根据正态分布可知,故.故答案选D.【点睛】本题主要考查了根据正态分布曲线的性质求指定区间的概率.5、B【解析】
先根据复数的除法求出,然后求出模长.【详解】因为,所以,,所以,故选B.【点睛】本题主要考查复数的运算和模长求解,侧重考查数学运算的核心素养.6、A【解析】
根据导数的基本公式和运算法则求导即可.【详解】,故选:A.【点睛】本题考查了导数的基本公式和运算法则,属于基础题.7、A【解析】
直接利用程序框图和分段函数求出结果.【详解】当时,,当时,,得,即.故选:A【点睛】本题考查了程序框图以及分段函数求值,属于基础题.8、D【解析】分析:利用二次函数的性质可判定复数的实部大于零,虚部小于零,从而可得结果.详解:因为,,所以复数在复平面上对应的点在第四象限,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.9、A【解析】分析:由已知条件利用离散型随机变量的数学期望计算公式求出a,进而求出,由此即可求出答案.详解:是离散型随机变量,,,,由已知得,解得,,.故选:A.点睛:本题考查离散型随机变量的方差的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望和方差计算公式的合理运用.10、C【解析】
11、A【解析】
从6张电影票中任选2张给甲、乙两人,共种方法;再将剩余4张票平均分给丙丁2人,共有种方法;根据分步乘法计数原理即可求得结果.【详解】分两步:先从6张电影票中任选2张给甲,乙两人,有种分法;再分配剩余的4张,而每人最多两张,所以每人各得两张,有种分法,由分步原理得,共有种分法.故选:A【点睛】本题主要考查分步乘法计数原理与组合的综合问题.12、B【解析】
先根据题意得出随机变量ξ~B3,25【详解】由题意知,ξ~B3,15故选:B。【点睛】本题考查二项分布概率的计算,关键是要弄清楚随机变量所服从的分布,同时也要理解独立重复试验概率的计算公式,着重考查了推理与运算能力,属于中等题。二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:利用几何概型的概率公式进行求解.解析:正方形中随机撒一粒豆子,它落在阴影区域内的概率,∴.点睛:本题考查几何概型的应用,处理几何概型问题的关键在于合理选择几何模型(长度、角度、面积和体积等),一般原则是“一个变量考虑长度、两个变量考虑面积、三个变量考虑体积).14、【解析】
根据题意,用间接法分析,先计算三颗棋子分别放入方格图中的三个方格内任意两颗棋子不同行、不同列的放法数目,再排除其中在同一条对角线上的数目,分析即可得出答案.【详解】解:根据题意,用间接法分析:若三颗棋子分别放入方格图中的三个方格内,且任意两颗棋子不同行、不同列,第一颗棋子有种放法,第二颗棋子有种放法,第三颗棋子有种放法,则任意两颗棋子不同行、不同列的放法有种,其中在正方形的同一条对角线上的放法有种,则满足题意的放法有种.故答案为:.【点睛】本题考查分步计数原理的应用,属于基础题.15、②④【解析】
根据成立即可求得对称轴,由对称轴结合解析式即可求得的值,可判断①;根据及对称轴即可求得的值,可判断②;根据条件可得与的关系,结合二次函数的值域即可判断③;根据条件可知函数为偶函数,根据存在性成立及恒成立,转化为函数的值域即可判断④.【详解】对于①,因为对任意,均有成立,则的图像关于直线对称,所以解得.即是轴对称函数,不是周期函数,所以①错误;对于②,的图像关于直线对称,可得,解得,所以②正确;对于③,,而由可知则或.当时,代入可得,即,解不等式组可得,不等式无解,所以不成立当时,代入可得,即,解不等式组可得,即所以,所以,所以③错误;对于④,由可知函数为偶函数,当时,;当时,.所以在上的值域为在上的值域为因为存在使得成立所以只需且即,即实数的取值范围是,所以④正确综上可知,说法正确的是②④故答案为:②④【点睛】本题考查了函数的奇偶性、对称性及恒成立问题的综合应用,对于分类讨论思想的理解,属于难题。16、【解析】
取计算,取计算得到答案.【详解】取,则取,则故答案为【点睛】本题考查了二项式的计算,取特殊值是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)若p为假命题,,可直接解得a的取值范围;(2)由题干可知p,q一真一假,分“p真q假”和“p假q真”两种情况讨论,即可得a的范围。【详解】解:(1)由命题P为假命题可得:,即,所以实数的取值范围是.(2)为真命题,为假命题,则一真一假.若为真命题,则有或,若为真命题,则有.则当真假时,则有当假真时,则有所以实数的取值范围是.【点睛】本题考查根据命题的真假来求变量的取值范围,属于基础题,判断为真的语句叫做真命题,判断为假的语句叫做假命题。18、(1).(2).【解析】分析:(1)利用极坐标与直角坐标互化的公式可得曲线的普通方程为.(2)联立直线的参数方程与C的二次方程可得.结合直线参数的几何意义有.利用三角函数的性质可知的取值范围是.详解:(1)由得.将,代入上式中,得曲线的普通方程为.(2)将的参数方程(为参数)代入的方程,整理得.因为直线与曲线有两个不同的交点,所以,化简得.又,所以,且.设方程的两根为,则,,所以,所以.由,得,所以,从而,即的取值范围是.点睛:本题主要考查极坐标方程与直角坐标方程的互化,直线参数方程的几何意义及其应用等知识,意在考查学生的转化能力和计算求解能力.19、(1);(2).【解析】试题分析:(1)由函数的解析式可得在上单调递增,则的取值范围是;(2)原问题等价于存在,使不等式成立.构造新函数,结合函数的性质可得实数的取值范围为.试题解析:(1)由得,在上单调递增,,的取值范围是.(2)存在,使不等式成立,存在,使不等式成立.令,从而,,,在上单调递增,.实数的取值范围为.20、(1):,:;(2)【解析】
(1)参数方程消参即可得普通方程,极坐标方程利用变形可得普通方程;(2)设,,利用距离公式求出,再求最值即可.【详解】解:(1)由题意得,所以的直角坐标方程,由得所以的直角坐标方程为;(2)设,,所以,所以,由知,所以的取值范围是.【点睛】本题考查参数方程,极坐标方程化为普通方程,考查参数方程的应用,对于最值问题应用参数方程来解决比较方便,是基础题.21、(1);(2);(3)1008.【解析】
(1)根据男生人数不少于女生人数,分三种情况讨论:选出5人中有5个男生,选出5人中有4名男生、1名女生,选出5人中有3名男生、2名女生,再全排列即可.(2)从剩余9人中选出4人,安排甲担任另外四科课代表,剩余四人全排列即可.(3)先安排甲担任另外三科的课代表,再从剩余8人中选择3人并全排列即可得解.【详解】(1)根据题意,分3种情况讨论:,选出的5人全部是男生,有种情况,,选出的5人中有4名男生、1名女生,有种情况,,选出的5人中有3名男生、2名女生,有种情况,则男生人数不少于女生人数的种数有种;(2)根据题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实验室用蒸馏器产业深度调研及未来发展现状趋势
- 抗麻风制剂产业深度调研及未来发展现状趋势
- 使用培养细胞的医学治疗行业营销策略方案
- 太阳能电池生产净化方案
- 义务教育阶段贫困生认定流程方案
- 小学生家务劳动教育实施方案
- 建筑工程质量与安全管理 2024秋学习通超星期末考试答案章节答案2024年
- 学校实验室多联机设备安装方案
- 中国特色社会主义理论与实践研究学习通超星期末考试答案章节答案2024年
- 体操垫产业链招商引资的调研报告
- 广东某办公楼改造装饰工程施工组织设计方案
- 2024-2030年冬虫夏草行业市场深度调研及发展趋势与投资战略研究报告
- 《20世纪的科学伟人爱因斯坦》参考课件2
- 八年级道德与法治上册 第一单元 走进社会生活 单元复习课件
- 设计师会议管理制度
- 三年级上册数学说课稿《5.笔算多位数乘一位数(连续进位)》人教新课标
- 行贿受贿检讨书
- 人教版《劳动教育》六上 劳动项目二《晾晒被子》教学设计
- (正式版)QC∕T 1208-2024 燃料电池发动机用氢气循环泵
- 中外合作办学规划方案
- 2024年人教版初一道德与法治上册期中考试卷(附答案)
评论
0/150
提交评论