版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程的实根所在的区间为()A. B. C. D.2.若能被整除,则的值可能为()A. B. C.x="5,n=4" D.3.设fx=sinxcosA.12 B.32 C.-4.已知椭圆的短轴长为2,上顶点为,左顶点为,分别是椭圆的左、右焦点,且的面积为,点为椭圆上的任意一点,则的取值范围为()A. B. C. D.5.已知集合,则下列判断正确的是()A. B.C. D.6.下列说法:①将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;②设有一个回归方程,变量增加个单位时,平均减少个单位;③线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果服从正态分布,若位于区域的概率为,则位于区域内的概率为⑤在线性回归分析中,为的模型比为的模型拟合的效果好;其中正确的个数是()A.1 B.2 C.3 D.47.复数为虚数单位)的虚部为()A. B. C. D.8.“数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相间,若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从大到小排列的,则不同的填法种数为()A.72 B.108 C.144 D.1969.下列关于回归分析的说法中,正确结论的个数为()(1)回归直线必过样本点中;(2)残差图中残差点所在的水平带状区域越宽,则回归方程的预报精度越高;(3)残差平方和越小的模型,拟合效果越好;(4)用相关指数来刻画回归效果,越大,说明模型的拟合效果越好.A.4 B.3 C.2 D.110.设x,y满足约束条件y+2⩾0,x-2⩽0,2x-y+1⩾0,A.-2 B.-32 C.-111.若函数在上可导,,则()A.2 B.4 C.-2 D.-412.如果函数y=f(x)的图象如图所示,那么导函数的图象可能是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则二项式的展开式中含项的系数为__________.14.在极坐标系中,圆上的点到直线的距离的最小值是____15.2019年5月15日,亚洲文明对话大会在中国北京开幕.来自亚洲全部47个国家和世界其他国家及国际组织的1352位会议代表共同出席大会.为了保护各国国家元首的安全,相关部门将5个安保小组安排到的三个不同区域内开展安保工作,其中“甲安保小组”不能单独被分派,且每个区域至少有一个安保小组,则这样的安排方法共有_________种.16.已知函数的图像经过第二、三、四象限,,则的取值范围是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题关于的方程的解集至多有两个子集,命题,,若是的必要不充分条件,求实数的取值范围.18.(12分)近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:对优惠活动好评对优惠活动不满意合计对商品状况好评10020120对商品状况不满意503080合计15050200(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是,,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.参考数据P(K2≥k)0.1500.1000.0500.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828参考公式:K2,其中n=a+b+c+d19.(12分)中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的b,a的值(b,a精确到0.01)相比于(Ⅰ)中(参考公式和计算结果:b=(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.20.(12分)已知抛物线上一点到焦点的距离,倾斜角为的直线经过焦点,且与抛物线交于两点、.(1)求抛物线的标准方程及准线方程;(2)若为锐角,作线段的中垂线交轴于点.证明:为定值,并求出该定值.21.(12分)已知函数(x≠0,常数a∈R).(1)判断f(x)的奇偶性,并说明理由;(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性22.(10分)已知定义域为R的函数f(x)=是奇函数,且a∈R.(1)求a的值;(2)设函数g(x)=,若将函数g(x)的图象向右平移一个单位得到函数h(x)的图象,求函数h(x)的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
构造函数,考查该函数的单调性,结合零点存在定理得出答案.【详解】构造函数,则该函数在上单调递增,,,,由零点存在定理可知,方程的实根所在区间为,故选B.【点睛】本题考查零点所在区间,考查零点存在定理的应用,注意零点存在定理所适用的情形,必要时结合单调性来考查,这是解函数零点问题的常用方法,属于基础题.2、C【解析】
所以当时,能被整除,选C.3、A【解析】
曲线在点π6,fπ【详解】∵f∴f【点睛】本题考查函数求导及导数的几何意义,属于基础题.4、D【解析】分析:由得椭圆的短轴长为,可得,,可得,从而可得结果.详解:由得椭圆的短轴长为,,解得,,设,则,,即,,故选D.点睛:本题考查题意的简单性质,题意的定义的有意义,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.5、C【解析】
先分别求出集合A与集合B,再判别集合A与B的关系,得出结果.【详解】,【点睛】本题考查了集合之间的关系,属于基础题.6、B【解析】
逐个分析,判断正误.①将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍;②设有一个回归方程,变量增加个单位时,平均减少个单位;③线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱;④服从正态分布,则位于区域内的概率为;⑤在线性回归分析中,为的模型比为的模型拟合的效果好.【详解】①将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍,错误;②设有一个回归方程,变量增加个单位时,平均减少个单位,正确;③线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱,③错误;④服从正态分布,则位于区域内的概率为,④错误;⑤在线性回归分析中,为的模型比为的模型拟合的效果好;正确故选B.【点睛】本题考查的知识点有标准差,线性回归方程,相关系数,正态分布等,比较综合,属于基础题.7、B【解析】
由虚数的定义求解.【详解】复数的虚部是-1.故选:B.【点睛】本题考查复数的概念,掌握复数的概念是解题基础.8、C【解析】
分步完成,5的上方和左边只能从1,2,3,4中选取,5的下方和右边只能从6,7,8,9中选取.【详解】按题意5的上方和左边只能从1,2,3,4中选取,5的下方和右边只能从6,7,8,9中选取.因此填法总数为.故选:C.【点睛】本题考查分步计数原理.解题关键是确定完成这件事的方法.9、B【解析】
利用回归分析的相关知识逐一判断即可【详解】回归直线必过样本点中,故(1)正确残差图中残差点所在的水平带状区域越窄,则回归方程的预报精度越高,故(2)错误残差平方和越小的模型,拟合效果越好,故(3)正确用相关指数来刻画回归效果,越大,说明模型的拟合效果越好,故(4)正确所以正确结论的个数为3故选:B【点睛】本题考查的是回归分析的相关知识,较简单.10、A【解析】
作出不等式组所表示的可行域,平移直线z=x+y,观察直线在x轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出z最大值和最小值,于此可得出答案。【详解】如图,作出约束条件表示的可行域.由图可知,当直线z=x+y经过点A(2,5)时.当直线z=x+y经过点B(-32,-2)时,z取得最小值.故z【点睛】本题考查简单的线性规划问题,一般利用平移直线利用直线在坐标轴上的截距得出最优解,考查计算能力,属于中等题。11、D【解析】由题设可得,令可得,所以,则,应选答案D.12、A【解析】试题分析:由原函数图像可知函数单调性先增后减再增再减,所以导数值先正后负再正再负,只有A正确考点:函数导数与单调性及函数图像二、填空题:本题共4小题,每小题5分,共20分。13、192【解析】因为,所以,由于通项公式,令,则,应填答案。14、1【解析】试题分析:圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.考点:直角坐标与极坐标、距离公式.15、108【解析】
根据题意,分两步,将5个安保小组分成组,然后全排列分派到每个区域,即可得到结果.【详解】根据题意,分两步进行:(1)将5个安保小组分成组,有种情况;(2)将分成的组全排列分派到每一个区域内,有种情况,根据分步计数原理,这样的安排方法共计有种情况.故答案为:108【点睛】本题考查了排列、组合以及分步计数原理,属于基础题.16、【解析】
利用函数的图像经过第二、三、四象限可得:,整理可得:,再利用指数函数的性质即可得解.【详解】因为函数的图像经过第二、三、四象限,所以,解得:又又,所以,所以所以,所以的取值范围是【点睛】本题主要考查了指数函数的性质及计算能力、分析能力,还考查了转化能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】
先求出命题为真命题时实数的取值范围,由是的必要不充分条件,得出命题中的集合是命题中的集合的真子集,于是得出不等式求解,可得出实数的取值范围。【详解】当命题是真命题时,则关于的方程的解集至多有两个子集,即关于的方程的解集至多只有一个实数解,,化简得,解得,或,且或,由于是的必要不充分条件,则,所以,,解得,因此,实数的取值范围是.【点睛】本题考查利用充分必要性求参数的取值范围,解这类问题一般利用充分必要性转化为集合的包含关系来处理,具体关系如下:(1),则“”是“”的充分不必要条件;(2),则“”是“”的必要不充分条件;(3),则“”是“”的充要条件;(4),则“”是“”的既不充分也不必要条件。18、(Ⅰ)在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系.(Ⅱ)见解析【解析】
(Ⅰ)根据独立性检验的公式,求得K3的值,利用附表即可得到结论;(Ⅱ)求得X的取值分别为,利用相互对立事件的计算公式,求得相应的概率,得出随机变量的分布列,利用期望的公式,即可求解.【详解】(Ⅰ)由题意,根据独立性检验的公式,可得K311.1>10.1.∴在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系.(Ⅱ)由题意可得:X的取值分别为0,1,3,3,3.则P(X=0),P(X=1)3,P(X=3)3,P(X=3)3,P(X=3).可得X的分布列为:X01333P(X)可得数学期望E(X)0+13333.【点睛】本题主要考查了独立性检验的应用,以及离散型随机变量的分布列及数学期望的求解,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.19、(1)17.5,;(3);(3)35.【解析】试题分析:(1)因为回归直线必过样本中心点,求得;(2)利用公式求得,再和现有数据进行比较;(3)是古典概型,由题意列出从这口井中随机选取口井的可能情况,求出概率.试题解析:因为,,回归只需必过样本中心点,则,故回归只需方程为,当时,,即的预报值为.………………4分因为,,所以.,即,.,,均不超过,因此使用位置最接近的已有旧井;………………8分易知原有的出油量不低于的井中,这口井是优质井,这口井为非优质井,由题意从这口井中随机选取口井的可能情况有:,,,共种,其中恰有口是优质井的有中,所以所求概率是.………………12分考点:线性回归方程及线性回归分析,古典概型.20、(1)抛物线的方程为,准线方程为;(2)为定值,证明见解析.【解析】
(1)利用抛物线的定义结合条件,可得出,于是可得出点的坐标,然后将点的坐标代入抛物线的方程求出的值,于此可得出抛物线的方程及其准线方程;(2)设直线的方程为,设点、,将直线的方程与抛物线的方程联立,消去,列出韦达定理,计算出线段的中点的坐标,由此得出直线的方程,并得出点的坐标,计算出和的表达式,可得出,然后利用二倍角公式可计算出为定值,进而证明题中结论成立.【详解】(1)由抛物线的定义知,,.将点代入,得,得.抛物线的方程为,准线方程为;(2)设点、,设直线的方程为,由,消去得:,则,,.设直线中垂线的方程为:,令,得:,则点,,.,故为定值.【点睛】本题考查利用抛物线的定义求抛物线的方程,以及直线与抛物线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装备科工作总结
- 建设施工机械设备合同书(3篇)
- 期末总结范文1200字(32篇)
- 投标保密的承诺书(30篇)
- 大一学生干部个人总结
- 江苏省泰州市(2024年-2025年小学五年级语文)人教版期末考试((上下)学期)试卷及答案
- 公共卫生主题培训
- 世界历史九年级上册教案全册
- DB11T 1133-2014 人工砂应用技术规程
- 消防电设备技术规格书
- 2024-2030年冬虫夏草行业市场深度调研及发展趋势与投资战略研究报告
- 《20世纪的科学伟人爱因斯坦》参考课件2
- 八年级道德与法治上册 第一单元 走进社会生活 单元复习课件
- 设计师会议管理制度
- 三年级上册数学说课稿《5.笔算多位数乘一位数(连续进位)》人教新课标
- 十字相乘法解一元二次方程练习100题及答案
- 行贿受贿检讨书
- 人教版《劳动教育》六上 劳动项目二《晾晒被子》教学设计
- (正式版)QC∕T 1208-2024 燃料电池发动机用氢气循环泵
- 中外合作办学规划方案
- 2024年人教版初一道德与法治上册期中考试卷(附答案)
评论
0/150
提交评论