2022-2023学年吉林省长春汽车经济技术开发区七校联考数学八下期末监测试题含解析_第1页
2022-2023学年吉林省长春汽车经济技术开发区七校联考数学八下期末监测试题含解析_第2页
2022-2023学年吉林省长春汽车经济技术开发区七校联考数学八下期末监测试题含解析_第3页
2022-2023学年吉林省长春汽车经济技术开发区七校联考数学八下期末监测试题含解析_第4页
2022-2023学年吉林省长春汽车经济技术开发区七校联考数学八下期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有()A.2个 B.3个 C.4个 D.5个2.反比例函数y=的图象如图所示,点M是该函数图象上的一点,MN垂直于x轴,垂足为N,若S△MON=,则k的值为()A. B. C.3 D.-33.下列条件中,不能判定四边形ABCD为菱形的是().A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,且AC⊥BDD.AB=CD,AD=BC,AC⊥BD4.下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形 B.矩形 C.菱形 D.正方形5.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)6.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.1 B.2 C.3 D.47.如图,中,点在边上,点在边上,且,则与相似的三角形的个数为()A.4个 B.3个 C.2个 D.1个8.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体 B.样本 C.个体 D.样本容量9.如图,平行四边形的周长为40,的周长比的周长多10,则为()A.5 B.20 C.10 D.1510.如图,将□ABCD的一边BC延长至点E,若∠A=110°,则∠1等于()A.110° B.35° C.70° D.55°11.如图,在中,,将绕点C按逆时针方向旋转得到,点A在边上,则的大小为A. B. C. D.12.如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D’处,则∠AED的度数为()A.50° B.60° C.70° D.80°二、填空题(每题4分,共24分)13.若一次函数的图象如图所示,点在函数图象上,则关于x的不等式kx+b≤4的解集是________.14.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为_____.15.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.16.一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为_____.17.一个小区大门的栏杆如图所示,垂直地面于,平行于地面,那么_________.18.已知函数y=2x2-3x+l,当y=1时,x=_____.三、解答题(共78分)19.(8分)树叶有关的问题如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:表1A树、B树、C树树叶的长宽比统计表12345678910A树树叶的长宽比4.04.95.24.15.78.57.96.37.77.9B树树叶的长宽比2.52.42.22.32.01.92.32.01.92.0C树树叶的长宽比1.11.21.20.91.01.01.10.91.01.3表1A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表平均数中位数众数方差A树树叶的长宽比6.26.07.92.5B树树叶的长宽比2.20.38C树树叶的长宽比1.11.11.00.02A树、B树、C树树叶的长随变化的情况解决下列问题:(1)将表2补充完整;(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。20.(8分)如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.(1)求证:DA=DF;(2)若∠ADE=∠CDE=30°,DE=2,求▱ABCD的面积.21.(8分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出把△ABC向下平移4个单位后的图形.(2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.(3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.22.(10分)如图,在ABC中,∠C=90º,BD是ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形,(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长23.(10分)如图所示,方格纸中的每个小方格都是边长为个单位长度的正方形,在建立平面直角坐标系后,的顶点均在格点上.①以原点为对称中心,画出与关于原点对称的.②将绕点沿逆时针方向旋转得到,画出,并求出的长.24.(10分)解下列方程(1);(2)25.(12分)已知:如图,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.求证:∠A=∠E.26.随着我国经济社会的发展,人民对于美好生活的追求越来越高,外出旅游已成为时尚.某社区为了了解家庭旅游消费情况,随机抽取部分家庭,对每户家庭的年旅游消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:组别家庭年旅游消费金额x(元)户数Ax≤400027B4000<x≤8000aC8000<x≤1200024D12000<x≤1600014Ex>160006(1)本次被调査的家庭有户,表中a=;(2)本次调查数据的中位数出现在组.扇形统计图中,E组所在扇形的圆心角是度;(3)若这个社区有2700户家庭,请你估计家庭年旅游消费8000元以上的家庭有多少户?

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BEA=∠EAD,∵AB=AE,∴∠ABE=∠BEA,∴∠EAD=∠ABE,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS);故①正确;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠ABE=∠BEA=∠BAE,∴∠BAE=∠BEA,∴AB=BE=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正确.若AD=BF,则BF=BC,题中未限定这一条件,∴③不一定正确;如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,∵△ABE是等边三角形,∴AG=EH,若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,∴④不一定正确;综上所述:正确的有①②⑤.故选:B.【点睛】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.2、D【解析】

根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.【详解】解:∵S△MON=,

∴|k|=,∴∵图象过二、四象限,∴反比例函数的系数为k=-1.

故选:D.【点睛】本题主要考查反比例函数的比例系数k的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.3、C【解析】

解:A、根据AC与BD互相平分得四边形ABCD是平行四边形,再有AC⊥BD,可得此四边形是平行四边形;B、根据AB=BC=CD=DA,可知四边形是平行四边形;C、由AB=BC,AD=CD,不能得到此四边形是平行四边形,所以不能判定四边形ABCD是菱形;D、由AB=CD,AD=BC得四边形是平行四边形,再有AC⊥BD,可得四边形是菱形.故选C.【点睛】本题考查菱形的判定.4、A【解析】【分析】根据理解中心对称图形和轴对称图形定义,可以判断.【详解】平行四边形是中心对称图形,不是轴对称图形;矩形是中心对称图形,也是轴对称图形;菱形是中心对称图形,也是轴对称图形;正方形是中心对称图形,也是轴对称图形.只有选项A符合条件.故选A【点睛】本题考核知识点:中心对称图形和轴对称图形.解题关键点:理解中心对称图形和轴对称图形定义.5、B【解析】试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.6、D【解析】

由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.7、C【解析】

由∠1=∠2=∠3,即可得DE∥BC,可得∠EDC=∠BCD,然后根据有两组角对应相等的两个三角形相似,即可判定△ADE∽△ABC,△ACD∽△ABC,又由相似三角形的传递性,可得△ADE∽△ABC∽△ACD,继而求得答案.【详解】∵∠1=∠2,∴DE∥BC,∴∠EDC=∠DCB,△ADE∽△ABC,∵∠2=∠3,∠A=∠A,∴△ACD∽△ABC,∴△ADE∽△ABC∽△ACD,∴图中与△ADE相似三角形共有2对.故选C.【点睛】此题考查了相似三角形的判定.此题难度不大,解题的关键是掌握有两组角对应相等的两个三角形相似定理的应用,注意数形结合思想的应用.8、B【解析】

根据总体、个体、样本、样本容量的定义逐个判断即可.【详解】解:抽出的500名考生的数学成绩是样本,故选B.【点睛】本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.9、A【解析】

由于平行四边形的对角线互相平分,那么△AOB、△BOC的周长差,实际是AB、BC的差,结合平行四边形的周长,即可得解.【详解】在平行四边形ABCD中,AO=OC,AB=CD,AD=BC,∵△AOB的周长比△BOC的周长少10cm,∴BC+OB+OC-(AB+OB+OA)=10cm,∴BC-AB=10cm,∵平行四边形ABCD的周长是40cm,∴AB+BC+CD+AD=40cm,∴BC+AB=20cm,∴AB=5cm.故选A.【点睛】本题考查平行四边形的性质,比较简单,关键是利用平行四边形的性质解题:平行四边形的对角线互相平分.​10、C【解析】

根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.【详解】∵四边形ABCD是平行四边形,∴∠BCD=∠A=110°,∴∠1=180°﹣∠BCD=180°﹣110°=70°,故选C.【点睛】本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.11、A【解析】

由旋转可得∠ACB=∠ACB,,所以,=90-48=42.【详解】由旋转可得∠ACB=∠ACB=48,因为在中,,所以,=90-48=42.故选A【点睛】本题考核知识点:旋转.解题关键点:理解旋转的性质.12、B【解析】

由折叠的性质可得AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠CAE,可求∠ACD=30°,由直角三角形的性质可求∠AED【详解】解:∵将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,∴AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠∴∠ACD=30°,∴∠DAC=60°,且∠DAE=∠CAE∴∠DAE=∠CAE=30°,且∠D=90°∴∠AED=60°故选:B.【点睛】本题考查了翻折变换,矩形的性质,熟练运用折叠的性质是本题的关键.二、填空题(每题4分,共24分)13、x≤1【解析】

根据函数图象确定其解集.【详解】点P(1,4)在一次函数y=kx+b(k≠0)的图象上,则

当kx+b≤4时,y≤4,故关于x的不等式kx+b≤4的解集为点P及其左侧部分图象对应的横坐标的集合,∵P的横坐标为1,∴不等式kx+b≤4的解集为:x≤1.故答案为:x≤1.【点睛】考查了一次函数与一元一次不等式的关系,解决此类试题时注意:一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14、1【解析】

根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.【详解】解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,

∴∠DBO=∠OBC,∠ECO=∠OCB,

∵DE∥BC,

∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,

∴DB=DO,OE=EC,

∵DE=DO+OE,

∴DE=BD+CE=1.

故答案为1.【点睛】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.15、【解析】

设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为y=.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16、22.1【解析】∵一组数据:25,29,20,x,11,它的中位数是21,所以x=21,∴这组数据为11,20,21,25,29,∴平均数=(11+20+21+25+29)÷5=22.1.故答案是:22.1.【点睛】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.17、【解析】

作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.【详解】解:作CH⊥AE于H,如图,

∵AB⊥AE,CH⊥AE,

∴AB∥CH,

∴∠ABC+∠BCH=180°,

∵CD∥AE,

∴∠DCH+∠CHE=180°,

而∠CHE=90°,

∴∠DCH=90°,

∴∠ABC+∠BCD=180°+90°=270°.

故答案为270°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.18、0或【解析】

把y=1时代入解析式,即可求解.【详解】解:当y=1时,则1=2x2-3x+1,解得:x=0或x=,故答案为0或.【点睛】本题考查的是二次函数图象上的点坐标特征,只要把y值代入函数表达式求解即可.三、解答题(共78分)19、(1)2.1,2.0;(2)小张同学的说法是合理的,小李学同的说法是不合理;(3)B树;【解析】

(1)根据中位数和众数的定义,由表中的数据求出B树树叶的长宽比的中位数和众数即可;(2)根据表中数据,求出C树树叶的长宽比的近似值,从而判断小张的说法,根据所给树叶的长宽比,判断小李的说法即可;(3)根据树叶的长和宽在图中用★标出该树叶,根据树叶的长宽比判断该树叶来自哪棵树即可.【详解】解(1)将这10片B树树叶的长宽比从小到大排列为:1.9,1.9,2.0,2.0,2.0,2.2,2.3,2.3,2.4,2.5,处在中间位置的两个数为2.0,2.2,∴中位数为(2.0+2.2)÷2=2.1;∵2.0出现了3次,出现的次数最多,∴众数为2.0.平均数中位数众数方差A树树叶的长宽比B树树叶的长宽比2.12.0C树树叶的长宽比(2)小张同学的说法是合理的,小李同学的说法是不合理的.理由如下:由表中的数据可知C树叶的长宽比近似于1,故小张的说法正确;由树叶的长度和宽度可知该树叶的长宽比近似于6,所以该树叶是A树的树叶,故小李的说法错误;(3)图1中,★表示这片树叶的数据,这片树叶来自B树;这块树叶的长宽比为103:52≈2,所以这片树叶来自B树.【点睛】本题主要考查了统计表的应用,平均数,中位数,众数,方差,用样本估计总体,熟练掌握中位数和众数的定义是解决此题的关键.20、(1)详见解析;(1)43【解析】

(1)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;(1)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE=23,解直角三角形求出EF=1,BF=4,AB=BF=4,BC=AD=1【详解】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD.∴∠BAF=∠F.∵AF平分∠BAD,∴∠BAF=∠DAF.∴∠F=∠DAF.∴AD=FD.(1)解:∵∠ADE=∠CDE=30°,AD=FD,∴DE⊥AF.∵tan∠ADE=AEDE=∴AE=1.∴S平行四边形ABCD=1S△ADE=AE•DE=43.【点睛】本题考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想,难度不大.21、(1)见解析;(2)见解析;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).【解析】

(1)直接利用平移的性质得出对应点位置进而得出答案;(2)首先确定A、B、C三点绕坐标原点O逆时针旋转90°后的对应点位置,再连接即可;(3)结合图形可得D点位置有三处,分别以AB、AC、BC为对角线确定位置即可.【详解】(1)如图所示,△即为所求作;(2)如图所示,△DEF即为所求作;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).【点睛】此题主要考查了作图--旋转变换,关键是正确确定A、B、C三点旋转后的位置.22、(1)证明见解析;(2)2.【解析】

(1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”;(2)利用全等得到线段AM=BE,AM=AF,利用正方形OECF,得到四边都相等,从而利用OE与BE、AF及AB的关系求出OE的长【详解】解:(1)过点O作OM⊥AB于点M∵正方形OECF∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F∵BD平分∠AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论