2022-2023学年湖北省黄冈市五校数学八年级第二学期期末考试模拟试题含解析_第1页
2022-2023学年湖北省黄冈市五校数学八年级第二学期期末考试模拟试题含解析_第2页
2022-2023学年湖北省黄冈市五校数学八年级第二学期期末考试模拟试题含解析_第3页
2022-2023学年湖北省黄冈市五校数学八年级第二学期期末考试模拟试题含解析_第4页
2022-2023学年湖北省黄冈市五校数学八年级第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.当x=2时,下列各式的值为0的是()A. B. C. D.2.若直线与直线的交点在第三象限,则的取值范围是()A. B. C.或 D.3.下列各数中,与的积为有理数的是()A. B. C. D.4.下列各式中,能与合并的二次根式是()A. B. C. D.5.下列条件中,不能判定四边形是平行四边形的是()A., B.,C., D.,6.点A(1,-2)关于x轴对称的点的坐标是()A.(1,-2) B.(-1,2) C.(-1,-2) D.(1,2)7.若数a使关于x的不等式组无解,且使关于x的分式方程有正整数解,则满足条件的整数a的值之积为()A.28 B.﹣4 C.4 D.﹣28.如图,在□ABCD中,点E、F分别在边AB、DC上,下列条件不能使四边形EBFD是平行四边形的条件是()A.DE=BF B.AE=CF C.DE∥FB D.∠ADE=∠CBF9.下列选项中,不能判定四边形ABCD是平行四边形的是A., B.,C., D.,10.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设(

)A.a不垂直于c B.a垂直于b C.a、b都不垂直于c D.a与b相交11.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:选手甲乙丙丁方差0.0350.0360.0280.015则这四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁12.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.对角线平分一组对角二、填空题(每题4分,共24分)13.如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____14.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.15.若关于x的分式方程有增根,则k的值为__________.16.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。17.函数,当时,_____;当1<<2时,随的增大而_____(填写“增大”或“减小”).18.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是____cm.三、解答题(共78分)19.(8分)已知x=,y=,求的值.20.(8分)在平面直角坐标系xOy中,点P在函数y=4x(x>0)的图象上,过P作直线PA⊥x轴于点A,交直线y=x于点M,过M作直线MB⊥y轴于点B.交函数y=(1)若点P的横坐标为1,写出点P的纵坐标,以及点M的坐标;(2)若点P的横坐标为t,①求点Q的坐标(用含t的式子表示)②直接写出线段PQ的长(用含t的式子表示)21.(8分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式.22.(10分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.23.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,线段AB的长度为;若在图中画出以C为直角顶点的Rt△ABC,使点C在格点上,请在图中画出所有点C;(2)在图②中,以格点为顶点,请先用无刻度的直尺画正方形ABCD,使它的面积为13;再画一条直线PQ(不与正方形对角线重合),使PQ恰好将正方形ABCD的面积二等分(保留作图痕迹).24.(10分)解方程:(1)9x2=(x﹣1)2(2)x2﹣2x﹣=025.(12分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.26.如图,在正方形ABCD中,点E,F分别是AB,BC上的点,且AF⊥DE.求证:AE=BF.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据分式值为0时,分子等于0,分母不等于0解答即可.【详解】当x=2时,A、B的分母为0,分式无意义,故A、B不符合题意;当x=2时,2x-4=0,x-90,故C符合题意;当x=2时,x+20,故D不符合题意.故选:C【点睛】本题考查的是分式值为0的条件,易错点是在考虑分子等于0的同时应考虑分母不等于0.2、A【解析】

先把y=﹣2x﹣1和y=2x+b组成方程组求解,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围.【详解】解:解方程组,解得∵交点在第三象限,∴解得:b>﹣1,b<1,∴﹣1<b<1.故选A.【点睛】本题主要考查两直线相交的问题,关键在于解方程组用含b的式子表示x、y.两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.3、C【解析】

根据实数运算的法则对各选项进行逐一计算作出判断.【详解】解:A、,是无理数,故本选项错误;B、,是无理数,故本选项错误;C、,是有理数,故本选项正确;D、,是无理数,故本选项错误.故选C.4、B【解析】

先化成最简二次根式,再判断即可.【详解】解:A、不能与合并,故本选项不符合题意;B、=,能与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=4,不能与合并,故本选项不符合题意.【点睛】本题考查了同类二次根式和二次根式的性质等知识点,能理解同类二次根式的定义是解此题的关键.5、A【解析】

根据平行四边形的判定方法逐个判断即可解决问题.【详解】解:A、若AB=CD,∠A=∠B,不可以判定四边形ABCD是平行四边形;B、∵AB∥CD,∴∠B+∠C=180°,∵∠A=∠C,∴∠A+∠B=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故B可以判定四边形ABCD是平行四边形;C、根据一组对边平行且相等的四边形是平行四边形,可知C可以判定四边形ABCD是平行四边形;D、根据两组对边分别平行的四边形是平行四边形,可知D可以判定四边形ABCD是平行四边形;故选:A.【点睛】本题考查平行四边形的判定,解题的关键是记住平行四边形的判定方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.6、D【解析】

根据关于横轴对称的点,横坐标不变,纵坐标变成相反数进行求解即可.【详解】点P(m,n)关于x轴对称点的坐标P′(m,-n),所以点A(1,-2)关于x轴对称的点的坐标是(1,2),故选D.7、B【解析】

解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=且x≠5,即a+3=1,5,10,解得:a=﹣2,2,1.综上,满足条件a的为﹣2,2,之积为﹣4,故选B.【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.8、A【解析】

根据平行四边形的性质可得AB∥CD,添加DE=BF后,满足一组对边平行,另一组对边相等,不符合平行四边形的判定方法,进而可判断A项;根据平行四边形的性质可得AB∥CD,AB=CD,进一步即得BE=DF,根据一组对边平行且相等的四边形是平行四边形即可判断B项;根据平行四边形的性质可得AB∥CD,进而根据平行四边形的定义可判断C项;根据平行四边形的性质可证明△ADE≌△CBF,进而可得AE=CF,DE=BF,然后根据两组对边相等的四边形是平行四边形即可判断D项.【详解】解:A、∵四边形ABCD是平行四边形,∴AB∥CD,由DE=BF,不能判定四边形EBFD是平行四边形,所以本选项符合题意;B、∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∵DE∥FB,∴四边形EBFD是平行四边形,所以本选项不符合题意;D、∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,AB=CD,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴AE=CF,DE=BF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意.故选:A.【点睛】本题考查了平行四边形的性质和判定以及全等三角形的判定和性质,属于常考题型,熟练掌握平行四边形的判定和性质是解本题的关键.9、C【解析】

根据平行四边形的判定方法逐项进行判断即可.【详解】A、由,可以判断四边形ABCD是平行四边形;故本选项不符合题意;B、由,可以判断四边形ABCD是平行四边形;故本选项不符合题意;C、由,不能判断四边形ABCD是平行四边形,有可能是等腰梯形;故本选项符合题意;D、由,可以判断四边形ABCD是平行四边形;故本选项不符合题意,故选C.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.10、D【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.【详解】解:用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”,应假设:a不平行b或a与b相交.故选择:D.【点睛】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.11、D【解析】∵0.036>0.035>0.028>0.015,∴丁最稳定,故选D.12、C【解析】

由矩形的对角线性质和平行四边形的对角线性质即可得出结论.【详解】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,但不一定相等,∴矩形具备而平行四边形不一定具备的是对角线相等.故选C.【点睛】本题考查了矩形的性质、平行四边形的性质;熟记矩形和平行四边形的性质是解题的关键.二、填空题(每题4分,共24分)13、2【解析】

由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.【详解】∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,∴DF为三角形ABC的中位线,∴DE∥BC,DF=BC,又∠ADF=90°,∴∠C=∠ADF=90°,又BE⊥DE,DE⊥AC,∴∠CDE=∠E=90°,∴四边形BCDE为矩形,∵BC=2,∴DF=BC=1,在Rt△ADF中,∠A=30°,DF=1,∴tan30°=,即AD=,∴CD=AD=,则矩形BCDE的面积S=CD⋅BC=2.故答案为2【点睛】此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形14、m≤1【解析】

利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得,

解得.

故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.15、或【解析】

分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.【详解】解:去分母得:,整理得:由分式方程有增根,得到,解得:或,把代入整式方程得:;把代入整式方程得:,则的值为或.故答案为:或【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16、y=3x-4【解析】试题分析:根据一次函数的平移的性质:左减右加,上加下减,向下平移4个单位长度,可知y=3x-4.考点:一次函数的图像的平移17、;增大.【解析】

将y=4代入,求得x的值即可,根据函数所在象限得,当1<x<2时,y随x的增大而增大.【详解】把y=4代入,得,解得x=,当k=-6时,的图象在第二、四象限,∴当1<x<2时,y随x的增大而增大;故答案为,增大.【点睛】本题考查了反比例函数的性质,重点掌握函数的增减性问题,解此题的关键是利用数形结合的思想.18、18【解析】

解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm【点睛】本题考查等边三角形的判定与性质,难度不大.三、解答题(共78分)19、30【解析】试题分析:先求出xy与x+y的值,再根据分式的加减法则进行计算即可;试题解析:∵x=,y=,

∴xy=×=1,x+y=+=3+2+3-2=6,所以原式=-4

=36-2-4

=30.20、(1)点P的纵坐标为4,点M的坐标为(1,1);(2)①4t,t【解析】

(1)直接将点P的横坐标代入y=4x(x>0)中,得到点P的纵坐标,由点M在PA上,PA⊥x(2)①由点P的横坐标为t,得到M的横坐标为t,因为M在y=x上,得到M的坐标为(t,t),从而得到Q的纵坐标,代入反比例函数解析式即可的到点Q的坐标;②连接PQ,很快就发现PQ是直角三角形PMQ的斜边,直接利用勾股定理即可得到答案.【详解】解:

(1)∵点P在函数y=4x(x>0)的图象上,点P∴y=4∴点P的纵坐标为4,∵点M在PA上,PA⊥x轴,且点P的横坐标为1,∴点M的横坐标为1,又∵点M在直线y=x上,∴点M的坐标为(1,1),故答案为点P的纵坐标为4,点M的坐标为(1,1);(2)①∵点P的横坐标为t,点P在函数y=4∴点P的坐标为t,4∵直线PA⊥x轴,交直线y=x于点M,∴点M的坐标为(t,t),

∵直线MB⊥y轴,交函数y=4x(x>0)的图象于点Q,

∴点Q②连接PQ,∵P的坐标为t,4t,M的坐标为(t,t),Q的坐标为∴PM=4t-t,MQ=∴PQ=PM故答案为线段PQ的长为2t-【点睛】本题考查的知识点是正比例函数的图像和性质,反比例函数的图像和性质,反比例函数的应用,平面直角坐标系中点的坐标,点到坐标及其原点的距离和勾股定理的应用,掌握好正比例函数与反比例函数的点的坐标特征是解题的关键.21、(1)日销售量的最大值为120千克;(2)李刚家多宝鱼的日销售量y与上市时间x的函数解析式为.【解析】分析:(1)观察函数图象,找出拐点坐标即可得出结论;(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,分0≤x≤12和12<x≤20,找出图象上点的坐标,利用待定系数法即可求出函数解析式.详解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+1.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.点睛:本题考查了一次函数的应用、一次函数的图象以及待定系数法求函数解析式,解题的关键是:(1)观察函数图象,找出最高点;(2)分段利用待定系数法求出函数解析式.本题属于中档题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.22、(1)见解析;(2)①7;②1.【解析】

(1)根据平行四边形的性质得出CF平行ED,再根据三角形的判定方法判定△CFG≌△EDG,从而得出FG=CG,根据平行四边形的判定定理,即可判断四边形CEDF为平行四边形.(2)①过A作AM⊥BC于M,根据直角三角形边角关系和平行四边形的性质得出DE=BM,根据三角形全等的判定方法判断△MBA≌△EDC,从而得出∠CED=∠AMB=90°,根据矩形的判定方法,即可证明四边形CEDF是矩形.②根据题意和等边三角形的性质可以判断出CE=DE,再根据菱形的判定方法,即可判断出四边形CEDF是菱形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=1时,四边形CEDF是菱形,理由是:∵AD=10,AE=1,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:1.【点睛】本题考查了平行四边形、矩形、菱形的判定方法,平行四边形的性质和三角形全等的判定和性质,解决本题的关键是正确理解题意,能够熟练掌握平行四边形、矩形、菱形的判定方法,找到各个量之间存在的关系.23、(1),答案见解析;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论