2021年湖南省益阳市沅江竹莲乡联校高一数学文上学期期末试卷含解析_第1页
2021年湖南省益阳市沅江竹莲乡联校高一数学文上学期期末试卷含解析_第2页
2021年湖南省益阳市沅江竹莲乡联校高一数学文上学期期末试卷含解析_第3页
2021年湖南省益阳市沅江竹莲乡联校高一数学文上学期期末试卷含解析_第4页
2021年湖南省益阳市沅江竹莲乡联校高一数学文上学期期末试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年湖南省益阳市沅江竹莲乡联校高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知是从到的映射,若1和8的原象分别是3和10,则5在下的象是

).3

.4

.5

.6参考答案:A略2.,则(

)A.

B.

C.

D.参考答案:D3.设函数与的图象的交点为,则所在的区间是(

)A.

B.

C.

D.参考答案:B4.已知△ABC的一个内角为120°,并且三边长构成公差为2的等差数列,则△ABC的周长为(

)A.15 B.18 C.21 D.24参考答案:A【分析】设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,推出a﹣b=b﹣c=2,a=c+4,b=c+2,利用余弦定理能求出三边长,从而得到这个三角形的周长.【详解】解:不妨设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,a=c+4,b=c+2,∵A=120°.∴cosA.∴c=3,∴b=c+2=5,a=c+4=7.∴这个三角形的周长=3+5+7=15.故选:A.【点睛】本题考查三角形的周长的求法,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.注意余弦定理的合理运用,是中档题.5.已知集合,集合,则

)A、{1,2,3}

B、{1,4}

C、{1}

D、参考答案:C略6.在矩形中,,,为的中点,若为该矩形内(含边界)任意一点,则的最大值为(

)A.

B.4

C.

D.5参考答案:C7.右图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A.

B.

C.

D.参考答案:A8.已知全集,若集合,则. .

.参考答案:D9.函数,是(

)A.偶函数

B.奇函数

C.既不是奇函数也不是偶函数

D.既是奇函数又是偶函数参考答案:B略10.函数的递增区间是

A.

B.

C.

D.参考答案:A

二、填空题:本大题共7小题,每小题4分,共28分11.若角的终边经过点,则_____.参考答案:【分析】根据三角函数的定义可求出,利用诱导公式可知,即可求解.【详解】因为角的终边经过点,所以,,故填.【点睛】本题主要考查了三角函数的定义,诱导公式,属于中档题.12.(5分)函数在区间[0,n]上至少取得2个最大值,则正整数n的最小值是

.参考答案:8考点: 三角函数的周期性及其求法.专题: 计算题.分析: 先根据函数的解析式求得函数的最小正周期,进而依据题意可推断出在区间上至少有个周期.进而求得n≥6×,求得n的最小值.解答: 周期T==6在区间[0,n]上至少取得2个最大值,说明在区间上至少有个周期.6×=所以,n≥∴正整数n的最小值是8故答案为8点评: 本题主要考查了三角函数的周期性及其求法.考查了考生对三角函数周期性的理解和灵活利用.13.已知是定义在上的奇函数,当时,,则函数的零点的集合为

.参考答案:14.已知,,且,则向量与夹角为

;参考答案:15.已知扇形的半径为R,周长为3R,则扇形的圆心角等于____________.参考答案:116.已知,则______________.参考答案:略17.在等差数列{an}中,公差,且成等比数列,则的值为

.参考答案:3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.惠城某影院共有100个座位,票价不分等次.根据该影院的经营经验,当每张标价不超过10元时,票可全部售出;当每张票价高于10元时,每提高1元,将有3张票不能售出.为了获得更好的收益,需给影院定一个合适的票价,符合的基本条件是:①为方便找零和算帐,票价定为1元的整数倍;②影院放映一场电影的成本费用支出为575元,票房收入必须高于成本支出.用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入).(Ⅰ)把y表示成x的函数,并求其定义域;(Ⅱ)试问在符合基本条件的前提下,每张票价定为多少元时,放映一场的净收入最多?参考答案:【考点】分段函数的应用.【分析】(Ⅰ)根据x的范围,分段求出函数表达式;(Ⅱ)分别求出两个函数的最大值,从而综合得到答案.【解答】解:(Ⅰ)由题意知当x≤10时,y=100x﹣575,当x>10时,y=[100﹣3(x﹣10)]x﹣575=﹣3x2+130x﹣575由﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解之得:又∵x∈N,∴6≤x≤38﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴所求表达式为定义域为{x∈N|6≤x≤38}.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)当y=100x﹣575,6≤x≤10,x∈N时,故x=10时ymax=425﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当y=﹣3x2+130x﹣575,10<x≤38,x∈N时,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣故x=22时ymax=833﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以每张票价定为22元时净收入最多.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣19.已知函数,其中是常数.(Ⅰ)若,且,求实数的取值范围;(Ⅱ)若方程有两个不相等实根,求实数的取值范围.参考答案:(Ⅰ)由已知,或

……3分解得:的取值范围是

……6分(Ⅱ),

令,则方程有两个不相等的实根等价于方程

有两个不相等的正实根,,……10分则有

……14分(其他解法酌情给分)20.A城市的出租车计价方式为:若行程不超过3千米,则按“起步价”10元计价;若行程超过3千米,则之后2千米以内的行程按“里程价”计价,单价为1.5元/千米;若行程超过5千米,则之后的行程按“返程价”计价,单价为2.5元/千米.设某人的出行行程为x千米,现有两种乘车方案:①乘坐一辆出租车;②每5千米换乘一辆出租车.(Ⅰ)分别写出两种乘车方案计价的函数关系式;(Ⅱ)对不同的出行行程,①②两种方案中哪种方案的价格较低?请说明理由.参考答案:【考点】函数模型的选择与应用;分段函数的应用.【分析】(Ⅰ)根据两种乘车方案:①乘坐一辆出租车;②每5千米换乘一辆出租车,分别写出两种乘车方案计价的函数关系式;(Ⅱ)分类讨论,作差,即可得出对不同的出行行程,①②两种方案中哪种方案的价格较低.【解答】解:(Ⅰ)方案①计价的函数为f(x),方案②计价的函数为g(x),则f(x)=;g(x)=;(Ⅱ)当0<x≤5时,f(x)=g(x),x>5时,f(x)<g(x)即方案①的价格比方案②的价格低,理由如下:x∈(5k,5k+3)(k∈N),f(x)﹣g(x)=2.5x﹣13k﹣9.5≤﹣0.5k﹣2<0;x∈(5k+3,5k+5)(k∈N),f(x)﹣g(x)=x﹣5.5k﹣5≤﹣0.5k<0.21.(12分)在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)求证:PB∥平面ACM;(Ⅱ)求证:AD⊥平面PAC;(Ⅲ)求二面角M﹣AC﹣D的正切值.参考答案:考点: 与二面角有关的立体几何综合题;直线与平面平行的判定;直线与平面垂直的判定.专题: 计算题.分析: (Ⅰ)连接OM,BD,由M,O分别为PD和AC中点,知OM∥PB,由此能够证明PB∥平面ACM.(Ⅱ)由PO⊥平面ABCD,知PO⊥AD,由∠ADC=45°,AD=AC=1,知AC⊥AD,由此能够证明AD⊥平面PAC.(Ⅲ)取DO中点N,连接MN,由MN∥PO,知MN⊥平面ABCD.过点N作NE⊥AC于E,由E为AO中点,连接ME,由三垂线定理知∠MEN即为所求,由此能求出二面角M﹣AC﹣D的正切值.解答: (Ⅰ)证明:连接OM,BD,∵M,O分别为PD和AC中点,∴OM∥PB,∵OM?平面ACM,PB?ACM平面,∴PB∥平面ACM….(4分)(Ⅱ)证明:由已知得PO⊥平面ABCD∴PO⊥AD,∵∠ADC=45°,AD=AC=1,∴AC⊥AD,∵AC∩PO=O,AC,PO?平面PAC,∴AD⊥平面PAC.…..(8分)(Ⅲ)解:取DO中点N,连接MN,则MN∥PO,∴MN⊥平面ABCD过点N作NE⊥AC于E,则E为AO中点,连接ME,由三垂线定理可知∠MEN即为二面角M﹣AC﹣D的平面角,∵MN=1,NE=∴tan∠MEN=2…..(13分)点评: 本题考查直线与平面平行、直线现平面垂直的证明,考查二面角的正切值的求法,解题时要认真审题,仔细解答,注意三垂直线定理的合理运用.22.已知函数是奇函数(a>0且a≠1) (1)求m的值; (2)判断f(x)在区间(1,+∞)上的单调性并加以证明. 参考答案:【考点】函数奇偶性的判断;函数单调性的判断与证明. 【专题】函数的性质及应用. 【分析】(1)由奇函数可得:f(﹣x)+f(x)=0,求出m的值之后,再验证是否满足函数的定义域关于原点对称即可; (2)根据函数的单调性和对数函数的单调性即可证明. 【解答】解:(1)∵已知函数是奇函数(a>0且a≠1), ∴f(﹣x)+f(x)=0, ∴,即, ∴,即1﹣m2x2=1﹣x2,∴m2=1,解得m=±1. 又∵,∴m=1应舍去. 当m=﹣1时,f(x)=,其定义域为{x|x<﹣1,或x>1}关于原点对称,故适合. ∴m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论