版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年辽宁省鞍山市第五高级中学高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=lnx+ax2+(a+2)x+1(a∈Z)在(0,+∞)上恒不大于0,则a的最大值为()A.-2 B.-1 C.0 D.1参考答案:A【分析】先求得函数导数,当时,利用特殊值判断不符合题意.当时,根据的导函数求得的最大值,令这个最大值恒不大于零,化简后通过构造函数法,利用导数研究所构造函数的单调性和零点,并由此求得的取值范围,进而求得的最大值.【详解】,当时,,则在上单调递增,,所以不满足恒成立;当时,在上单调递增,在上单调递减,所以,又恒成立,即.设,则.因为在上单调递增,且,,所以存在唯一的实数,使得,当时,;当时,,所以,解得,又,所以,故整数的最大值为.故选A.【点睛】本小题主要考查利用导数研究函数的单调性和最值,考查构造函数法,考查零点存在性定理,考查化归与转化的数学思想方法,属于中档题.2.已知{an}是等差数列,a1=﹣26,a8+a13=5,当{an}的前n项和Sn取最小值时,n等于()A.8 B.9 C.10 D.11参考答案:B【考点】等差数列的前n项和.【分析】利用等差数列的通项公式先求出公差,再求出等差数列前n项和公式,由此利用配方法能求出{an}的前n项和Sn取最小值时,n的值.【解答】解:∵{an}是等差数列,a1=﹣26,a8+a13=5,∴﹣26+7d﹣26+12d=5,解得d=3,∴Sn=﹣26n+==(n﹣)2+,∴{an}的前n项和Sn取最小值时,n=9.故选:B.3.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则=()
A.35
B.48
C.63
D.80参考答案:C方法一:找规律:3=1×3,8=2×4,15=3×5,24=4×6,35=5×7,48=6×8,63=7×9
方法二:由得:,解得:4.设F(x)=f(x)+f(﹣x),x∈R,若[﹣π,﹣]是函数F(x)的单调递增区间,则一定是F(x)单调递减区间的是()A.[﹣,0] B.[,0] C.[π,π] D.[,2π]参考答案:B【考点】3D:函数的单调性及单调区间.【分析】根据条件先判断函数F(x)的奇偶性,结合函数奇偶性和单调性之间的关系进行求解即可.【解答】解:∵F(x)=f(x)+f(﹣x),∴F(﹣x)=f(﹣x)+f(x)=F(x),则函数F(x)是偶函数,若[﹣π,﹣]是函数F(x)的单调递增区间,则[,π]是函数F(x)的单调递递减区间,∵[,0]?[,π],∴[,0]是函数F(x)的单调递递减区间,故选:B.5.已知函数有两个极值点,且,则的取值范围是(
)A.[-1.5,3] B.[1.5,6] C.[1.5,12] D.[3,12]参考答案:D【分析】先求得函数的导数,然后利用二次函数的性质列不等式组,然后利用线性规划的知识,求得的取值范围.【详解】,导函数为二次函数,开口向上,故,即,,画出不等式组表示的可行域如下图所示,由图可知,分别在处取得最小值和最大值,即最小值为,最大值为,故的取值范围是,故选D.【点睛】本小题主要考查导数与极值点,考查二次函数的性质,考查化归与转化的数学思想方法,考查线性规划求取值范围,综合性较强,属于难题.6.执行如图所示的程序框图,输出的值为
(
)A.5
B.6
C.7
D.8参考答案:A7.在研究吸烟与患肺癌的关系中,通过收集数据,整理、分析数据得出“吸烟与患肺癌有关”的结论,并有99%的把握认为这个结论是成立的,下列说法中正确的是()A.吸烟人患肺癌的概率为99%B.认为“吸烟与患肺癌有关”犯错误的概率不超过1%C.吸烟的人一定会患肺癌D.100个吸烟人大约有99个人患有肺癌参考答案:B【考点】BN:独立性检验的基本思想.【分析】“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,表示有99%的把握认为这个结论成立,与多少个人患肺癌没有关系,得到结论.【解答】解:∵“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,表示有99%的把握认为这个结论成立,与多少个人患肺癌没有关系,只有B选项正确,故选:B.8.用反证法证明命题“三角形三个内角至少有一个不大于”时,应假设A.三个内角都不大于 B.三个内角都大于C.三个内角至多有一个大于 D.三个内角至多有两个大于参考答案:B本题主要考查反证法.由于利用反证法在证明时,对结论进行假设为对立事件,因此,证明命题“三角形三个内角至少有一个不大于”时,应假设“三个内角都大于”9.已知,是的导函数,即,,…,,,则()A.
B.
C.
D.参考答案:A略10.已知,则的最小值为(
)
A.
B.16
C.20
D.10参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.不等式的解为. 参考答案:{x|x>1或x<0}【考点】其他不等式的解法. 【专题】计算题. 【分析】通过移项、通分;利用两个数的商小于0等价于它们的积小于0;转化为二次不等式,通过解二次不等式求出解集. 【解答】解: 即 即x(x﹣1)>0 解得x>1或x<0 故答案为{x|x>1或x<0} 【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出 12.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,名额分配的方法共有种(用数字作答).
参考答案:
84略13.下列流程图是循环结构的是________.参考答案:③④14.已知向量与向量的夹角为120°,若且,则在上的投影为.参考答案:【考点】数量积判断两个平面向量的垂直关系.【分析】因为向量与向量的夹角为120°,所以在上的投影为,问题转化为求.【解答】解:因为向量与向量的夹角为120°,所以在上的投影为,问题转化为求,因为,故,所以在上的投影为.故答案为:.【点评】本题考查在上的投影的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.15.如图,已知可行域为及其内部,若目标函数当且仅当在点A处取得最大值,则k的取值范围是
.参考答案:16.已知,若p是q的必要不充分条件,则的取值范围是
▲
参考答案:17.有下列四个命题:①“若,则,互为倒数”的逆命题;②“使得”的否定是“都有”;③“若≤1,则有实根”的逆否命题;④“”是“直线与直线相互垂直”的必要不充分条件.其中是真命题的是
(填上你认为正确命题的序号).
参考答案:_①②③略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分分)已知直线经过直线与直线的交点,且垂直于直线.(Ⅰ)求直线的方程;(Ⅱ)求直线与两坐标轴围成的三角形的面积.参考答案:(Ⅰ)由
解得由于点P的坐标是(,).则所求直线与直线垂直,可设直线的方程为.把点P的坐标代入得,即.所求直线的方程为.…………4分(Ⅱ)由直线的方程知它在轴、轴上的截距分别是、,所以直线与两坐标轴围成三角形的面积.
………………6分19.在平面直角坐标系中,已知圆,圆.(Ⅰ)判断圆与圆的位置关系;(Ⅱ)若动圆同时平分圆的周长、圆的周长,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.参考答案:(Ⅰ)相离.略20.函数在处取得极值.(1)求函数的解析式;(2)求函数的单调递减区间.参考答案:21.如图,在底面为平行四边形的四棱锥P﹣ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,点E是PD的中点.(1)求证:AC⊥PB;(2)当二面角E﹣AC﹣D的大小为45°时,求AP的长.参考答案:【考点】MT:二面角的平面角及求法;LO:空间中直线与直线之间的位置关系.【分析】(1)推导出AC⊥PA,AB⊥AC,从而AC⊥平面PAB,由此能证明AC⊥PB.(2)以A为原点,AC为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出AP.【解答】证明:(1)∵在底面为平行四边形的四棱锥P﹣ABCD中,PA⊥平面ABCD,∴AC⊥PA,∵BC=2AB═4,∠ABC=60°,∴AC==2,∴AC2+AB2=BC2,∴AB⊥AC,∵PA∩AB=A,∴AC⊥平面PAB,∵PB?平面PAB,∴AC⊥PB.解:(2)以A为原点,AC为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,设AP=t,则P(0,0,t),D(2,2,0),E(),C(2,0,0),A(0,0,0),=(2,0,0),=(),设平面ACE的法向量=(x,y,z),则,取z=2,得=(0,﹣t,2),平面ACD的法向量=(0,0,1),∵二面角E﹣AC﹣D的大小为45°,∴cos45°==,解得t=2.∴AP=2.22.已知命题p:lg(x2﹣2x﹣2)≥0;命题q:0<x<4.若p且q为假,p或q为真,求实数x的取值范围.参考答案:【考点】2E:复合命题的真假.【分析】分别求出p,¬p以及¬q的范围,根据p,q的真假,得到关于x的不等式组,解出即可.【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025机械设备的买卖合同
- 洛阳理工学院《工科大学化学-物理化学(二)》2023-2024学年第一学期期末试卷
- 污水处理厂导向钻进施工合同
- 墙绘施工合同范本
- 教育培训机构劳务管理
- 食品企业财务健康检查
- 2024年动力煤进口清关共享成功之道!3篇
- 广西壮族自治区河池市2023-2024学年高一上学期1月期末考试数学试题(解析版)
- 医疗器械招投标管理规范
- 医药招投标项目招标文件编制
- 国家开放大学电大《建筑制图基础》机考三套标准题库及答案3
- 降低故障工单回复不合格率
- 可涂色简笔画打印(共20页)
- 灯光架介绍及使用说明
- 十一学校行动纲要
- GB 1886.6-2016 食品安全国家标准 食品添加剂 硫酸钙(高清版)
- 关于房屋征收及土地收储过程中的税收政策(仅供参考)
- 唯一住房补贴申请书(共2页)
- 单面多轴钻孔组合机床动力滑台液压系统课程设计
- 中医养生脾胃为先PPT文档
- 门窗工程成品保护方案(附图)
评论
0/150
提交评论